A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial-temporal variation and driving factors decomposition of agricultural grey water footprint in China. | LitMetric

The management of agricultural water pollution is crucial to alleviate the water crisis and promote regional sustainable development. Therefore, it is necessary to clarify the spatial-temporal variation characteristics of the agricultural grey water footprint (GWF) and accurately identify its main influencing factors, aiming at formulating differentiated regional management strategies. Based on this, the agricultural GWFs of 31 provincial regions in China from 2011 to 2019 were firstly calculated, and then the spatial-temporal variation characteristics of agricultural GWF were analyzed using the ArcGIS software and Standard Deviational Ellipse (SDE) method. Finally, the Generalized Divisia Index Method (GDIM) was creatively introduced to decompose the factors of agricultural GWF change and their respective contributions at the national and provincial levels. The main results are as follow: (1) Agricultural GWF in China decreased on the whole and showed significant provincial differences. Among them, the agricultural GWF of Henan Province was the largest while that of Shanghai City was the smallest. Compared with 2011, most provinces saw a decrease in agricultural GWF in 2019 while Yunnan, Tibet, Qinghai, Ningxia and Xinjiang Provinces achieved growth. (2) Areas with higher agricultural GDP generally had higher agricultural GWF. The spatial distribution of agricultural GWF and breeding GWF generally tended to be consistent, with the lower value in northwest and southeast of China and higher value in the northeast and southwest of China. Meanwhile, the mean center of SDE of agricultural GWF was located in Henan Province from 2011 to 2018, and shifted to Shaanxi Province in 2019, showing a slight northwest shift. (3) Agricultural GWF intensity and agricultural GDP had the largest restraining effect and driving effect on agricultural GWF growth, respectively. Additionally, China has achieved decoupling between agricultural GWF and agricultural GDP, reflecting that the patterns of agricultural production and consumption have become more sustainable. The findings of this study can provide important decision-making insights for agricultural water pollution management and industry adjustment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115601DOI Listing

Publication Analysis

Top Keywords

agricultural gwf
44
agricultural
20
gwf
13
spatial-temporal variation
12
agricultural gdp
12
agricultural grey
8
grey water
8
water footprint
8
agricultural water
8
water pollution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!