While zeolite-based mixed matrix membrane (MMM) has been proven effective to remove the ammonia in the wastewater by adsorption, its adsorption capacity is limited by the low zeolite loading due to the need of a high concentration of polymer matrix to maintain the mechanical strength. To break the bottleneck, in this study we proposed a facile solvent evaporation method instead of conventional phase inversion method to prepare the zeolite-based MMMs. With this new preparation method, the loading of zeolite could reach up to ∼90wt.% while the MMM still maintained a good mechanical property. The zeolite-based MMM could treat 910 L·m of feedwater before reaching the ammonia breakthrough point (0.5 mg-N·L) when treating the synthetic wastewater water. In addition, it showed a high rejection of turbidity and natural organic material (NOM) (∼90%), mainly due to its high negative surface charge density. When applied to treat real surface water, the membrane demonstrated a high normalized treatable capacity (∼900 L·m) with a high rejection to NOM (87.4%). Moreover, the MMM even showed a higher fouling resistance than the PVDF microfiltration membrane. Regeneration and cleaning with NaClO could efficiently recover the adsorption capacity and water flux of the MMM. After four cycles of operation, the MMM still maintained a high treatable capacity (850 L·m) with a high NOM rejection. This study provides a new strategy for the preparation of high-loading zeolite-based MMM for the effective removal of ammonia from surface water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.118849 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:
The extensive use of antibiotics has led to their frequent detection as residues in the environment. However, monitoring of their levels in groundwater and the associated ecological and health risks remains limited, and the impact of river pollution on groundwater is still unclear. This study focused on the highly urbanized Maozhou River and its groundwater.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
The ubiquitous presence of plastic waste presents a significant environmental challenge, characterized by its persistence and detrimental impacts on ecosystems. The valorization of plastic waste through conversion into high-value carbon materials offers a promising circular economy approach. This review critically examines the potential of plastic waste-derived activated carbon (PAC) as a sustainable and effective adsorbent for water remediation.
View Article and Find Full Text PDFSci Rep
January 2025
College of Architecture and Transportation, Liaoning Technical University, Fuxin, 123000, China.
CO in coal mine underground spaces can easily cause casualties among miners. The humidity in coal mines is relatively high, and traditional Cu-Mn catalysts are prone to deactivation. Compared to traditional Cu-Mn catalysts, doping with Sn enhances the activity and water resistance of Cu-Mn catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!