Microglia are specialized macrophages in the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments. However, how and where these states are generated remains poorly understood. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes. Using single-cell and spatial transcriptomic profiling, we unveil the molecular signatures and spatial distributions of diverse microglia populations and show that certain states are enriched in specific cortical layers, whereas others are broadly distributed throughout the cortex. Notably, conversion of deep-layer pyramidal neurons to an alternate class identity reconfigures the distribution of local, layer-enriched homeostatic microglia to match the new neuronal niche. Leveraging the transcriptional diversity of pyramidal neurons in the neocortex, we construct a ligand-receptor atlas describing interactions between individual pyramidal neuron subtypes and microglia states, revealing rules of neuron-microglia communication. Our findings uncover a fundamental role for neuronal diversity in instructing the acquisition of microglia states as a potential mechanism for fine-tuning neuroimmune interactions within the cortical local circuitry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502800 | PMC |
http://dx.doi.org/10.1038/s41586-022-05056-7 | DOI Listing |
Hippocampus
March 2025
UCL Institute of Cognitive Neuroscience, University College London, London, UK.
Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction.
View Article and Find Full Text PDFDalton Trans
March 2025
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
This paper addresses the synthesis, characterization, DNA binding, cleavage, and antiproliferative activity studies of a series of heteroleptic mononuclear copper(II) complexes [Cu(L)(bpy)](ClO), {1}; [Cu(L)(phen)](ClO), {2}; and [Cu(L)(Mephen)](ClO), {3} derived from different polypyridyl ligands, where in the complex architecture, one 2,6-bis(1-methyl-1-benzo[]imidazol-2-yl)pyridine(Mebzimpy) (L) moiety is connected to the central Cu metal in a tridentate fashion and the bidentate co-ligands are 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (Mephen). All the synthesized complexes were characterized using various spectroscopic and analytical methods, along with the single-crystal X-ray diffraction (SCXRD) technique. The complexes crystallize in a penta-coordinated distorted square pyramidal geometry.
View Article and Find Full Text PDFCortical GABAergic interneurons (INs) are comprised of distinct types that provide tailored inhibition to pyramidal cells (PCs) and other INs, thereby enabling precise control of cortical circuit activity. INs expressing the neuropeptide vasoactive-intestinal peptide (VIP) have attracted attention recently following the discovery that they predominantly function by inhibiting dendritic-targeting somatostatin (SST) expressing INs, thereby disinhibiting PCs. This VIP-SST disinhibitory circuit motif is observed throughout the neocortex from mice to humans, and serves as a key mechanism for top-down (feedback) and context-dependent information processing.
View Article and Find Full Text PDFBiochemistry (Mosc)
January 2025
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
In neurophysiology, the transmitter phenotype is considered as an indicator of neuronal identity. It has become known at the end of last century that a nerve cell can produce and use several different molecules to communicate with other neurons. These could be "classical" transmitters: glutamate or gamma-aminobutyric acid (or acetylcholine, serotonin, norepinephrine), as well as secondary messengers, mainly neuropeptides released from the same neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!