Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use N-H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449972 | PMC |
http://dx.doi.org/10.1021/acs.molpharmaceut.2c00398 | DOI Listing |
Biopolymers
January 2025
Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Lebanon.
Biomaterials with antimicrobial and muco-adhesive properties represent an efficient system for different applications. In this paper, a new biomaterial based on chitosan-camphor beads and their crosslinked form with glutaraldehyde was optimized. Low and high molecular weight chitosan were considered.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Dairy Science Department, Faculty of Agriculture Assiut University Assiut Egypt.
This study investigated the effects of incorporating defatted rice bran (DRB) at different concentrations (0.5%, 1%, 1.5%, and 2%) on the quality, microbiological, and sensory characteristics of probiotic low-fat yogurt (LFY) during a 21-day storage period at 4°C.
View Article and Find Full Text PDFpeels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes.
View Article and Find Full Text PDFCureus
December 2024
Department of Mechanical Engineering, State University of Piauí, Teresina, BRA.
The decline in research for new antimicrobials, combined with the rise in bacterial resistance, has become a critical issue that is expected to worsen over time. As an alternative, health sciences have integrated materials engineering to develop new bioactive compounds through the interaction of nanoparticles with plant-derived compounds. These compounds offer advantages such as high bioavailability and low cost, exemplified by , a plant native to the Brazilian Cerrado.
View Article and Find Full Text PDFChem Biodivers
December 2024
İstanbul Üniversitesi-Cerrahpaşa: Istanbul Universitesi-Cerrahpasa, Chemical Engineering, Avcılar, İstanbul, TURKEY.
The use of bioactive compounds in plants as reducing, stabilizing, and capping agents in nanoparticle manufacturing is an exceptionally eco-friendly approach. This work used rosehip seed extract, acquired by automatic solvent extraction, in the microwave-assisted green production of zinc oxide nanoparticles (ZnO NPs). The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of the extracted materials and nanoparticles were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!