Interstitial fluid streaming in deep tissue induced by ultrasound momentum transfer for accelerating nanoagent transport and controlling its distribution.

Phys Med Biol

Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America.

Published: August 2022

This study aims to theoretically investigate the dynamics of ultrasound-induced interstitial fluid streaming and tissue recovery after ultrasound exposure for potentially accelerating nanoagent transport and controlling its distribution in tissue.Starting from fundamental equations, the dynamics of ultrasound-induced interstitial fluid streaming and tissue relaxation after an ultrasound exposure were modeled, derived and simulated. Also, both ultrasound-induced mechanical and thermal effects were considered in the models.The proposed new mechanism was named squeezing interstitial fluid via transfer of ultrasound momentum (SIF-TUM). It means that an ultrasound beam can squeeze the tissue in a small focal volume from all the directions, and generate a macroscopic streaming of interstitial fluid and a compression of tissue solid matrix. After the ultrasound is turned off, the solid matrix will recover and can generate a backflow. Rather than the ultrasound pressure itself or intensity, the streaming velocity is determined by the dot product of the ultrasound pressure gradient and its conjugate. Tissue and nanoagent properties also affect the streaming and recovery velocities.The mobility of therapeutic or diagnostic agents, such as drugs, drug carriers, or imaging contrast agents, in the interstitial space of many diseased tissues, such as tumors, is usually extremely low because of the inefficiency of the natural transport mechanisms. Therefore, the interstitial space is one of the major barriers hindering agent deliveries. The ability to externally accelerate agent transport and control its distribution is highly desirable. Potentially, SIF-TUM can be a powerful technology to accelerate agent transport in deep tissue and control the distribution if appropriate parameters are selected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319495PMC
http://dx.doi.org/10.1088/1361-6560/ac88b5DOI Listing

Publication Analysis

Top Keywords

interstitial fluid
20
fluid streaming
12
deep tissue
8
ultrasound
8
ultrasound momentum
8
accelerating nanoagent
8
nanoagent transport
8
transport controlling
8
controlling distribution
8
dynamics ultrasound-induced
8

Similar Publications

Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.

View Article and Find Full Text PDF

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

Background: This study aims to detect Mycobacterium tuberculosis complex (MTBC) DNA in intraocular fluid from clinically suspected tuberculous uveitis patients using multiplex polymerase chain reaction (PCR) and investigate the diagnostic utility of multiplex PCR for tuberculous uveitis.

Methods: Primers targeting three specific genes (MPB64, CYP141, and IS6110) within the MTBC genome were designed. Multiplex PCR was conducted using DNA from the H37Rv strain as well as DNA extracted from fluids of confirmed tuberculosis patients to assess primer specificity and method feasibility.

View Article and Find Full Text PDF

Acne vulgaris is one of the most common skin diseases worldwide and affects a large population of patients. Post-acne scarring can pose a significant psychosocial burden on patients of all ages; therefore, treatment approaches must be both rapid-acting and effective. Microneedling is a minimally invasive technology that involves the creation of controlled tissue microinjury and subsequent induction of collagen production and tissue remodeling.

View Article and Find Full Text PDF

Purpose Of Review: Knee osteoarthritis (OA) is a gradual deterioration of articular cartilage characterized by pain and physical dysfunction. Although analgesic pharmacological agents are the first-line treatment for knee OA, they are not effective for all patients. In this study, we evaluate the efficacy of an intra-articular injection treatment using platelet-rich plasma (PRP) in reducing pain and improving functional ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!