Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380259PMC
http://dx.doi.org/10.1016/j.celrep.2022.111177DOI Listing

Publication Analysis

Top Keywords

phosphoproteomics primary
8
primary aml
8
aml patient
8
patient samples
8
rational drug
8
drug combinations
8
selinexor
6
aml
4
samples reveals
4
reveals rationale
4

Similar Publications

MAPK14/p38α shapes the molecular landscape of endometrial cancer and promotes tumorigenic characteristics.

Cell Rep

December 2024

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:

The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture.

View Article and Find Full Text PDF

Background: Radiation-induced colorectal fibrosis (RICF) is a chronic condition that can develop after pelvic radiation therapy for colorectal cancer. Adipose-derived mesenchymal stem cells (ADSCs) have emerged as promising candidate for fibrosis treatment, yet the mode of action of ADSC upon RICF remains obscure. This study aimed to investigate the optimal delivery route, treatment timing, anti-fibrotic effects, and underlying mechanisms of ADSCs upon RICF.

View Article and Find Full Text PDF

The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female . To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites.

View Article and Find Full Text PDF

Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action.

Cell Metab

December 2024

Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy.

View Article and Find Full Text PDF

Fat accumulation, de novo lipogenesis, and glycolysis are key drivers of hepatocyte reprogramming and the consequent metabolic dysfunction-associated steatotic liver disease (MASLD). Here we report that obesity leads to dysregulated expression of hepatic protein-tyrosine phosphatases (PTPs). PTPRK was found to be increased in steatotic hepatocytes in both humans and mice, and correlates positively with PPARγ-induced lipogenic signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!