The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458454 | PMC |
http://dx.doi.org/10.1093/nar/gkac671 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Nat Commun
January 2025
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Division of Biological Sciences, Indian Institute of Science, Bangalore 560 012. Electronic address:
Paralogues of the bifunctional nuclease, Ribonuclease J (RNase J) demonstrate varied catalytic efficiencies despite extensive sequence and structural similarity. Of the two S. aureus RNase J paralogues, RNase J1 is substantially more active than RNase J2.
View Article and Find Full Text PDFPlant Sci
December 2024
Instituto de Fisiología Vegetal (INFIVE CCT CONICET La Plata), Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Diagonal 113 Nº 495 (1900) La Plata, Argentina. Electronic address:
Nitrate reductase (NR) is an essential enzyme because of its role in nitrogen metabolism and in key signaling events through the generation of the reactive nitrogen species, nitric oxide (NO). In this work, we evaluated changes in endogenous NO levels during the onset of P-restriction in soybean plants (Glycine max), focusing on the possible pathways involved in its generation, namely NR and NO synthase like activity, NOS, and the subsequent role of NR during low P-acclimation. During the first 96h of P-starvation NO levels increased in the leaves.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!