Underwater image enhancement aims at improving the visibility and eliminating color distortions of underwater images degraded by light absorption and scattering in water. Recently, retinex variational models show remarkable capacity of enhancing images by estimating reflectance and illumination in a retinex decomposition course. However, ambiguous details and unnatural color still challenge the performance of retinex variational models on underwater image enhancement. To overcome these limitations, we propose a hyper-laplacian reflectance priors inspired retinex variational model to enhance underwater images. Specifically, the hyper-laplacian reflectance priors are established with the l -norm penalty on first-order and second-order gradients of the reflectance. Such priors exploit sparsity-promoting and complete-comprehensive reflectance that is used to enhance both salient structures and fine-scale details and recover the naturalness of authentic colors. Besides, the l norm is found to be suitable for accurately estimating the illumination. As a result, we turn a complex underwater image enhancement issue into simple subproblems that separately and simultaneously estimate the reflection and the illumination that are harnessed to enhance underwater images in a retinex variational model. We mathematically analyze and solve the optimal solution of each subproblem. In the optimization course, we develop an alternating minimization algorithm that is efficient on element-wise operations and independent of additional prior knowledge of underwater conditions. Extensive experiments demonstrate the superiority of the proposed method in both subjective results and objective assessments over existing methods. The code is available at: https://github.com/zhuangpeixian/HLRP.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3196546DOI Listing

Publication Analysis

Top Keywords

underwater image
16
image enhancement
16
reflectance priors
16
retinex variational
16
hyper-laplacian reflectance
12
underwater images
12
underwater
8
variational models
8
variational model
8
enhance underwater
8

Similar Publications

The significant absorption and scattering of light during its propagation in water severely degrade the quality of underwater imaging, presenting challenges for developing high-precision 3D imaging techniques based on optical methods. Polarization imaging has demonstrated effectiveness in mitigating the effects of scattering, making it a valuable approach for underwater imaging. Additionally, the polarization state of reflected light can be utilized for surface normal estimation and 3D shape reconstruction.

View Article and Find Full Text PDF

Underwater optical imaging, especially in coastal waters, suffers from reduced spatial resolution and contrast by forward scattered light. With the increased number of hyper- and multi-spectral imaging applications, the effect of the point spread function (PSF) at different spectral bands becomes increasingly more relevant. In this work, extensive laboratory measurements of the PSF at 450, 500, 550, 600 and 650 nm in different turbidity have been carried out.

View Article and Find Full Text PDF

Our study introduces a pioneering underwater single-pixel imaging approach that employs an orbital angular momentum (OAM) basis as a sampling scheme and a dual-attention residual U-Net generative adversarial network (DARU-GAN) as reconstruction algorithm. This method is designed to address the challenges of low sampling rates and high turbidity typically encountered in underwater environments. The integration of the OAM-basis sampling scheme and the improved reconstruction network not only enhances reconstruction quality but also ensures robust generalization capabilities, effectively restoring underwater target images even under the stringent conditions of a 3.

View Article and Find Full Text PDF

Impact of Cell Layout on Bandwidth of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measurements Technology and Instrument, Tianjin University, Tianjin 300072, China.

Piezoelectric micromachined ultrasonic transducers (PMUTs) show considerable promise for application in ultrasound imaging, but the limited bandwidth of the traditional PMUTs largely affects the imaging quality. This paper focuses on how to arrange cells with different frequencies to maximize the bandwidth and proposes a multi-frequency PMUT (MF-PMUT) linear array. Seven cells with gradually changing frequencies are arranged in a monotonic trend to form a unit, and 32 units are distributed across four lines, forming one element.

View Article and Find Full Text PDF

This work demonstrates the feasibility of performing through-the-sensor (TTS) sub-bottom imaging using low-frequency ([100 Hz-1kHz]) self-noise generated by the propulsion of an autonomous underwater vehicle (AUV) acting as a source of opportunity. The self-noise was recorded by a short towed horizontal line array (11.4 m aperture) by the same AUV while it operated ∼35 m above the seabed along a range-dependent section at the New England shelf break.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!