This work reports the dynamic behaviors of graphene aerogel (GA) microfibers during and after continuous wave (CW) laser photoreduction. The reduction results in one-order of magnitude increase in the electrical conductivity. The experimental results reveal the exact mechanisms of photoreduction as it occurs: immediate photochemical removal of oxygen functional groups causing a sharp decrease in electrical resistance and subsequent laser heating that facilitates thermal rearrangement of GO sheets towards more graphene-like domains. X-ray and Raman spectroscopy analysis confirm that photoreduction removes virtually all oxygen and nitrogen containing functional groups. Interestingly, a dynamic period immediately following the end of laser exposure shows a slow, gradual increase in electrical resistance, suggesting that a proportion of the electrical conductivity enhancement from photoreduction is not permanent. A two-part experiment monitoring the resistance changes in real-time before and after photoreduction is conducted to investigate this critical period. The thermal diffusivity evolution of the microfiber is tracked and shows an improvement of 277 % after all photoreduction experiments. A strong linear coherency between thermal diffusivity and electrical conductivity is also uncovered. This is the first known work to explore both the dynamic electrical and thermal evolution of a GO-based aerogel during and after photoreduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087394 | PMC |
http://dx.doi.org/10.1002/cphc.202200417 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!