A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroplating of HAp-brushite coating on metallic bioimplants with advanced hemocompatibility and osteocompatibility properties. | LitMetric

In cases of severe bone tissue injuries, the use of metallic bioimplants is quite widespread due to their high strength, high fracture toughness, hardness, and corrosion resistance. However, they lack adequate biocompatibility and show poor metal-tissue integration during the post-operative phase. To mitigate this drawback, it is beneficial to add a biocompatible polymer layer to ensure a quick growth of cell or tissue over the surface of metallic bioimplant material. Furthermore, this additional layer should possess good adherence with the underlying material and also accompany a rapid bonding between the tissue and the implant material, in order to reduce the recovery time for the patient. Therefore, in this work, we report a novel green electroplating route for growing porous hydroxyapatite-brushite coatings on a stainless steel surface. The malic acid used for the production of hydroxyapatite-brushite coatings has been obtained from an extract of locally available apple fruit (). We demonstrate the effect of electroplating parameters on the structural morphology of the electroplated composite layer via XRD, SEM with EDS, and FTIR characterization techniques and report an optimized set of electroplating parameters that will yield the best composite coating in terms of thickness, adherence to substrate and speed. The hemocompatibility and osteocompatibility studies on the electroplated composites coating show this technology's effectiveness and potential applicability in biomedical applications. Compared to other routes reported in the literature, this electroplating route is quicker and yields better composite coatings with faster bone tissue growth potential.

Download full-text PDF

Source
http://dx.doi.org/10.1177/22808000221103970DOI Listing

Publication Analysis

Top Keywords

metallic bioimplants
8
hemocompatibility osteocompatibility
8
bone tissue
8
electroplating route
8
hydroxyapatite-brushite coatings
8
electroplating parameters
8
electroplating
5
electroplating hap-brushite
4
hap-brushite coating
4
coating metallic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!