Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structure-uncoupling activity relationship of seven anthraquinone derivatives were investigated using rat liver mitochondria. Three compounds bearing the free hydroxyl group at the beta-position of their anthraquinone nucleus (1,3,6,8-tetrahydroxyanthraquinone, 1-acetyl-2,4,5,7-tetrahydroxy-9,10-anthracenedione and skyrin) exhibited uncoupling effect. Rugulosin, rugulin and physcion (all lacking the hydroxyl at the beta-position) were ineffective. Erythroglaucin, a derivative of physcion with the free hydroxyl group at the gamma-position, exhibited the highest uncoupling activity in the series tested. In addition, erythroglaucin abolished the energy dependent Ca2+ retention in mitochondria and induced Ca2+ leak. It also prevented the energization of mitochondrial membrane by ATP and induced a loss of the ATP induced membrane potential similarly as did carbonylcyanamide-3-chlorophenyl hydrazone (CCCP). The data show that the free hydroxyl group at either the gamma-position or the beta-position of anthraquinone nucleus is a prerequisite of the uncoupling activity of hydroxyanthraquinones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0009-2797(87)90089-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!