Growing evidence indicates that circulating lactoferrin (Lf) is implicated in peripheral cholesterol metabolism disorders. It has emerged that the distribution of Lf changes in astrocytes of aging brains and those exhibiting neurodegeneration; however, its physiological and/or pathological role remains unknown. Here, we demonstrate that astrocyte-specific knockout of Lf (designated cKO) led to decreased body weight and cognitive abnormalities during early life in mice. Accordingly, there was a reduction in neuronal outgrowth and synaptic structure in cKO mice. Importantly, Lf deficiency in the primary astrocytes led to decreased sterol regulatory element binding protein 2 (Srebp2) activation and cholesterol production, and cholesterol content in cKO mice and/or in astrocytes was restored by exogenous Lf or a Srebp2 agonist. Moreover, neuronal dendritic complexity and total dendritic length were decreased after culture with the culture medium of the primary astrocytes derived from cKO mice and that this decrease was reversed after cholesterol supplementation. Alternatively, these alterations were associated with an activation of AMP-activated protein kinase (AMPK) and inhibition of SREBP2 nuclear translocation. These data suggest that astrocytic Lf might directly or indirectly control in situ cholesterol synthesis, which may be implicated in neurodevelopment and several neurological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24259DOI Listing

Publication Analysis

Top Keywords

cko mice
12
cholesterol synthesis
8
led decreased
8
primary astrocytes
8
cholesterol
6
astrocyte-specific loss
4
loss lactoferrin
4
lactoferrin influences
4
influences neuronal
4
neuronal structure
4

Similar Publications

Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congential seizures.

View Article and Find Full Text PDF

The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Article Synopsis
  • Alzheimer’s disease (AD) is linked to changes in microglial cells, particularly the gene GPR56, which is associated with brain health and may impact disease progression.
  • Research utilized a unique mouse model to delete GPR56 specifically in microglia, revealing that its absence worsened AD symptoms, including increased plaque formation and cognitive issues.
  • Further analyses showed that without GPR56, microglial functions related to phagocytosis and overall health were significantly impaired, suggesting its critical role in modulating the microglial response in AD.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.

View Article and Find Full Text PDF

Background: BIN1, the second strongest GWAS risk factor for late-onset Alzheimer's disease (AD), encodes a nucleocytoplasmic adaptor protein that plays many roles in multiple tissue and cell types. It is known that BIN1 can directly bind to tau in vitro, and neuronal BIN1 expression decreases in patients with AD. Accumulation of intracellular hyperphosphorylated tau is a hallmark pathogenic feature of AD and related tauopathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!