Initial reports early on in the pandemic in 2020 indicate a high incidence of acute kidney injury (AKI) in coronavirus disease 2019 (COVID-19). There is a need to better understand risk factors for AKI in patients with COVID-19. It is also unclear if AKI in patients with COVID-19 differs from AKI due to other causes. More data are required to clarify if COVID-19 is an independent risk factor for AKI and how COVID-19-associated AKI may differ from AKI due to other causes. We, therefore, sought to review the published evidence about the reported relationship between COVID-19, AKI, and outcomes. We performed a systematic search via PubMed and EMBASE using key words "COVID-19" and "AKI" to identify relevant observational studies, case series, and cohort studies published between March 2020 and April 2021. We also manually examined the reference lists of included studies and reviewed the AKI reports published in general medicine journals such as BMJ, Lancet, NEJM, and JAMA. The prevalence of AKI in hospitalized patients with COVID-19 differed across various regions of the world. Initial reports from China where cases of COVID-19 began initially have shown a much lower prevalence compared to those from Europe and North America, especially in critically ill patients in the intensive care unit with acute respiratory distress syndrome. The various components of severe acute respiratory syndrome-associated AKI appear in large parts to be similar to sepsis-induced AKI. However, affinity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specifically to the angiotensin-converting enzyme 2 receptors located on podocytes and endothelial cells of the kidney also points toward the direct cytotoxic effects of the virus on the kidney. Numerous mechanisms likely occur simultaneously and hence more treatment approaches need to be streamlined based on pathophysiology. Although data from published literature regarding previous SARS coronaviruses can give some useful insights, we will know more going forward about the nature of kidney injury associated with COVID-19 virus as well as optimum-specific therapeutic management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/1319-2442.352414 | DOI Listing |
Cell Commun Signal
January 2025
Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Pharmaceutical Care, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
Background: The optimal pharmacokinetic and pharmacodynamic (PK/PD) parameters of vancomycin that can improve outcomes in enterococcal infections remain controversial. To clarify the therapeutic target for this antibiotic, this study aimed to determine vancomycin PK/PD parameters associated with efficacy in the early (during 72 h) or later (after 72 h) phase of treatment and nephrotoxicity in enterococcal bloodstream infection patients.
Methods: This multicenter retrospective study reviewed medical records of patients with enterococcal bloodstream infections treated with intravenous vancomycin infusion for at least 72 h between January 2016 and March 2024 at Phramongkutklao Hospital or Nopparatrajathanee Hospital in Bangkok, and Rachaburi Hospital in Rachaburi Province, Thailand.
Pediatr Nephrol
January 2025
NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK.
Acute kidney injury (AKI) in paediatric kidney transplant recipients is common. Infection including urinary tract infection (UTI) and rejection are the most common causes in children. Surgical complications often cause AKI early post-transplant, whereas BK polyomavirus nephropathy rarely occurs in the first month post-transplant.
View Article and Find Full Text PDFGut Microbes
December 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
January 2025
The University of Queensland, Brisbane, Australia.
Background: Advanced glycation end-products (AGEs) can enter patients' circulation through exogenous sources, such as enteral nutrition formulae. Circulating AGEs, specifically carboxymethyllysine, can promote insulin resistance and activation of pro-inflammatory pathways leading to oxidative stress, cell death, and organ failure. Suboptimal kidney function increases the risk of elevated circulating AGEs because levels are controlled through urinary excretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!