Despite a substantial number of COVID-19 related research papers published, it remains unclear as to which factors are associated with the observed variation in global transmission and what are their relative levels of importance. This study applies a rigorous statistical framework to provide robust estimations of the factor effects for a global and integrated perspective on this issue. We developed a mixed effect model exploring the relative importance of potential factors driving COVID-19 transmission while incorporating spatial and temporal heterogeneity of spread. We use an integrated data set for 87 countries across six continents for model specification and fitting. The best model accounts for 70.4% of the variance in the data analyzed: 10 fixed effect factors explain 20.5% of the variance, random temporal and spatial effects account for 50% of the variance. The fixed effect factors are classified into climatic, demographic and disease control groups. The explained variance in global transmission by the three groups are 0.6%, 1.1%, and 4.4% respectively. The high proportion of variance accounted for by random effects indicated striking differences in temporal transmission trajectories and effects of population mobility among the countries. In particular, the country-specific mobility-transmission relationship turns out to be the most important factor in explaining the observed global variation of transmission in the early phase of COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349723PMC
http://dx.doi.org/10.1029/2022GH000589DOI Listing

Publication Analysis

Top Keywords

climatic demographic
8
disease control
8
variation global
8
covid-19 transmission
8
global transmission
8
fixed factors
8
transmission
6
factors
5
global
5
variance
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!