Root-rot disease has lead to serious reduction in yields and jeopardized the survival of the economically and ecologically important trees cultured in Sichuan Province. In order to investigate the interaction between the microbiome and the root-rot disease, a metagenomic analysis was performed to characterize the microbial communities and functions in root endosphere, rhizosphere and bulk soil with/without root-rot disease. Soil physicochemical properties, microbial population size and enzyme activities were also analyzed for finding their interactions with the root-rot disease. As results, lower total nitrogen (TN) and available phosphorus (AP) contents but higher pH in rhizosphere and bulk soil, as well as lower substrate-induced respiration (SIR) and higher protease activity in bulk soil of diseased trees were found, in comparison with that of healthy trees. Microbial diversity and community composition were changed by root-rot disease in the endosphere, but not in rhizosphere and bulk soils. The endophytic microbiome of diseased trees presented higher Proteobacteria abundance and lower abundances of Bacteroidetes, Firmicutes and dominant fungal phyla. The relative abundances of nitrogen cycle- and carbon cycle-related genes in endophytic microbiomes were different between the diseased and healthy trees. Based on ANOSIM and PCoA, functional profiles (KEGG and CAZy) of microbiomes in rhizosphere and bulk soil shifted significantly between the diseased and healthy trees. In addition, soil pH, TN, AP, SIR, invertase and protease were estimated as the main factors influencing the shifts of taxonomic and functional groups in microbiomes of rhizosphere and bulk soil. Conclusively, the imbalance of root and soil microbial function groups might lead to shifts in the root endosphere-rhizosphere microenvironment, which in turn resulted in root-rot.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357373 | PMC |
http://dx.doi.org/10.7717/peerj.13808 | DOI Listing |
Plant Dis
January 2025
Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;
Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.
View Article and Find Full Text PDFPlant Dis
December 2024
Xuchang, China;
Tobacco ( L.) is an economically important crop in China. In April 2024, field tobacco (cv.
View Article and Find Full Text PDFPlant Dis
December 2024
Liaoning Institute of Economic Forestry, Dalian, Liaoning, China;
Aralia elata (Miq.) Seem, is an important cash crop in northeastern China. The tender shoots are rich in amino acids, vitamins, and trace elements, and the saponins of leaves and roots have antioxidant and immune-boosting properties.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
To obtain an effective bacterial biocontrol strain against the fungal pathogen , causing rubber tree red root rot disease, healthy rubber tree tissue from Baisha County, Hainan Province, was selected as the isolation source, and bacterial strains with strong antifungal effects against . were screened. The strain was identified by molecular biology, in vitro root segment tests, pot growth promotion tests, and genome detection.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.
is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with , including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!