Background: A greater understanding of disease heterogeneity may facilitate precision medicine for coronavirus disease 2019 (COVID-19). Previous work identified four distinct clinical phenotypes associated with outcome and treatment responses in non-COVID-19 sepsis patients, but it is unknown if and how these phenotypes are recapitulated in COVID-19 sepsis patients.
Methods: We applied the four non-COVID-19 sepsis phenotypes to a total of 52,274 critically ill patients, comprising two cohorts of COVID-19 sepsis patients (admitted before and after the introduction of dexamethasone as standard treatment) and three non-COVID-19 sepsis cohorts (non-COVID-19 viral pneumonia sepsis, bacterial pneumonia sepsis, and bacterial sepsis of non-pulmonary origin). Differences in proportions of phenotypes and their associated mortality were determined across these cohorts.
Results: Phenotype distribution was highly similar between COVID-19 and non-COVID-19 viral pneumonia sepsis cohorts, whereas the proportion of patients with the δ-phenotype was greater in both bacterial sepsis cohorts compared to the viral sepsis cohorts. The introduction of dexamethasone treatment was associated with an increased proportion of patients with the δ-phenotype (6% vs. 11% in the pre- and post-dexamethasone COVID-19 cohorts, respectively, p < 0.001). Across the cohorts, the α-phenotype was associated with the most favorable outcome, while the δ-phenotype was associated with the highest mortality. Survival of the δ-phenotype was markedly higher following the introduction of dexamethasone (60% vs 41%, p < 0.001), whereas no relevant differences in survival were observed for the other phenotypes among COVID-19 patients.
Conclusions: Classification of critically ill COVID-19 patients into clinical phenotypes may aid prognostication, prediction of treatment efficacy, and facilitation of personalized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361232 | PMC |
http://dx.doi.org/10.1186/s13054-022-04118-6 | DOI Listing |
J Vet Intern Med
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.
Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.
J Fungi (Basel)
December 2024
Laboratory of Haematology and Blood Bank Unit, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece.
Background: Systemic infection (SCI) is the third most common cause of late-onset sepsis in Neonatal Intensive Care Units (NICU). While platelet involvement in fungal infections has been extensively studied, evaluation of the hemostatic mechanism in Candida infections, especially in neonates, has not been widely investigated. The aim of the current study was to evaluate the hemostatic profile of neonates with SCI through rotational thromboelastometry (ROTEM), a laboratory method that assesses the viscoelastic properties of blood.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: This study aimed to investigate the association between serum heat shock protein 27 (HSP27) levels and 28-day mortality in patients with sepsis.
Methods: This retrospective study analyzed the clinical data of 76 septic patients admitted to the intensive care unit (ICU). Fifty non-septic ICU patients and 50 healthy individuals served as control groups.
Background: This study aimed to identify distinct trajectories of serum osmolality within the first 72 h for patients with sepsis-associated encephalopathy (SAE) in the MIMIC-IV and eICU-CRD databases and assess their impact on mortality and adverse clinical outcomes.
Methods: In this retrospective cohort study, patients with SAE from the MIMIC-IV database were included. Group-based trajectory modeling (GBTM) was used to categorize distinct patterns of serum osmolality changes over 72 h in ICU patients.
Eur Respir J
January 2025
Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
Introduction: Immune response dysregulation has been implicated in the development of intensive care unit (ICU)-acquired pneumonia. We aimed to determine differences in the longitudinal blood transcriptional response between patients who develop ICU-acquired pneumonia (cases) and those who do not (controls).
Methods: We performed a case-cohort study in mechanically ventilated trauma and surgery patients with ICU stays >2 days, enrolled in 30 hospitals across Europe.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!