Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes.

Harmful Algae

Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94920, 1090 XH, Amsterdam, The Netherlands. Electronic address:

Published: August 2022

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis. Here, we sampled two consecutive Phaeocystis globosa spring blooms in the coastal North Sea. In both years, bacterial cells were observed inside 0.6 - 2% of P. globosa cells using double CARD-FISH hybridizations in combination with laser scanning confocal microscopy. Incubation experiments manipulating light and nutrient availability showed a trend towards higher occurrence of intracellular bacteria under P-deplete conditions. Based on counts of bacteria inside P. globosa cells in combination with theoretical values of prey digestion times, maximum ingestion rates of up to 0.08 bacteria cell h were estimated. In addition, a gene-based predictive model was applied to the transcriptome assemblies of seven Phaeocystis strains and 24 other haptophytes to assess their trophic mode. This model predicted a phago-mixotrophic feeding strategy in several (but not all) strains of P. globosa, P. antarctica and other haptophytes that were previously assumed to be autotrophic. The observation of bacterial cells inside P. globosa and the gene-based model predictions strongly suggest that the phago-mixotrophic feeding strategy is widespread among members of the Phaeocystis genus and other haptophytes, and might contribute to their remarkable success to form nuisance blooms under nutrient-limiting conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2022.102292DOI Listing

Publication Analysis

Top Keywords

inside globosa
12
north sea
8
phaeocystis globosa
8
bacterial cells
8
globosa cells
8
phago-mixotrophic feeding
8
feeding strategy
8
phaeocystis
7
globosa
6
haptophytes
5

Similar Publications

A Comparative Study of the Anatomy of Leaf Domatia in Thunb., Thunb., and (Hochst.) Keay (Rubiaceae).

Plants (Basel)

November 2022

Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.

Many dicotyledonous plants produce structures called leaf domatia. Approximately 28% of 290 families have species with leaf domatia. These structures are abundant within the Rubiaceae and Vitaceae.

View Article and Find Full Text PDF

Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes.

Harmful Algae

August 2022

Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94920, 1090 XH, Amsterdam, The Netherlands. Electronic address:

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis.

View Article and Find Full Text PDF

Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae , formerly ), is phylogenetically related to members of the family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes.

View Article and Find Full Text PDF

Phytoplankton blooms exhibit a severe impact on bacterioplankton communities as they change nutrient availabilities and other environmental factors. In the current study, the response of a bacterioplankton community to a Phaeocystis globosa spring bloom was investigated in the southern North Sea. For this purpose, water samples were taken inside and reference samples outside of an algal spring bloom.

View Article and Find Full Text PDF

The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!