Insights into rapidly recovering the autotrophic nitrogen removal performance of single-stage partial nitritation-anammox systems: Reconstructing granular sludge and its functional microbes synergy.

Bioresour Technol

School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China. Electronic address:

Published: October 2022

AI Article Synopsis

  • Partial nitritation-anammox (PNA) processes can break down easily when faced with bad wastewater conditions, causing a big drop in nitrogen removal efficiency.
  • Researchers tested a special recovery method for PNA systems that helped improve nitrogen removal from only 5.97% back to 61.77% in just 43 days.
  • The recovery was supported by changes in the types of bacteria present, with a shift from one type (Nitrospira) to another (Candidatus Brocadia), which worked together better to remove nitrogen efficiently.

Article Abstract

Partial nitritation-anammox (PNA) deteriorates easily and is difficult to recover. After an airlift inner-circulation partition bioreactor was impacted by low NH-N wastewater containing organic matter, Nitrospira and Denitratisoma propagated rapidly, granular sludge disintegrated, and the total nitrogen removal efficiency (TNRE) decreased from 68.27 % to 5.97 %. This study used a unique strategy to recover deteriorated single-stage PNA systems and explored the mechanism of rapid performance recovery. The TNRE of the system recovered up to 61.77 % in 43 days. The high nitrogen loading rate and hydraulic shear force from the airlift caused the sludge in the reactor to granulate again. The microbial community structure recovered, with a decrease in the abundance of Nitrospira (0.05 %) and enrichment of Candidatus Brocadia (8.82 %). A favorable synergy among functional microbes in the reactor was thus re-established, promoting the rapid recovery of the nitrogen removal performance. This study provides a feasible recovery strategy for PNA processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127750DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
12
removal performance
8
partial nitritation-anammox
8
granular sludge
8
functional microbes
8
insights rapidly
4
rapidly recovering
4
recovering autotrophic
4
nitrogen
4
autotrophic nitrogen
4

Similar Publications

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Unveiling heterointerface activation effects with different titanium dioxide crystal phases for electrocatalytic nitrate-to-ammonia reduction.

J Hazard Mater

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:

Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.

View Article and Find Full Text PDF

Enhancing single-stage partial nitritation-anammox process with airlift inner-circulation and oxygen partition: a novel strategy for treating high-strength ammonium wastewater.

Environ Res

January 2025

School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China. Electronic address:

In the single-stage partial nitritation-anammox process for high-ammonium wastewater treatment, the presence of sufficient biomass with high activity is essential. This study developed an innovative airlift inner-circulation partition bioreactor (AIPBR) with a dual-cylinder structure. During the 362 days' operation, the AIPBR exhibited robust and stable nitrogen removal performance under diverse influent ammonium spanning from 300 to 1800 mg N/L.

View Article and Find Full Text PDF

Effect of doping in TiO/chitosan composite on adsorptive-photocatalytic removal of gallic acid from water.

Chemosphere

January 2025

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:

Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!