To genetically assess the Australian distribution and frequency of Eimeria species in wild rabbits, with a primary focus on Eimeria intestinalis and Eimeria flavescens as possible additional agents of rabbit biocontrol, the distal colon and faecal samples from wild rabbits sourced from 26 Australian locations with mean annual rainfalls of between 252 mm and 925 mm were analysed using amplicon sequencing of the ITS1 region. Contrary to previous microscopy studies which had only detected E. flavescens on mainland Australia at Wellstead in south-west Western Australia, we detected this species at all 23 effectively sampled sites. The more pathogenic E. intestinalis was only found at 52.2% of sites. Three unique Eimeria genotypes were detected that did not align to the 11 published sequences using a pairwise-match threshold of 90%, and may represent unsequenced known species or novel species. One genotype we termed E. Au19SH and was detected at 20 sites, E. Au19CO was detected at eight sites, and E. Au19CN was detected in one rabbit at Crows Nest (Qld). Site diversity ranged from only five Eimeria species at Boboyan (ACT) to 13 unique sequences at Cargo (NSW). Eimeria diversity in individual rabbits ranged from 11 unique sequences in a rabbit at Wellstead (WA) and a rabbit at Cargo (NSW), to one in 17 rabbits and zero in six rabbits. The three rabbit age classes averaged 4.3 Eimeria species per rabbit. No relationship was found between the number of Eimeria species detected and mean annual rainfall. As Eimeria species were found to be fairly ubiquitous at most sites they appear to be an unlikely additional candidate to assist the control of pest rabbits in Australia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parint.2022.102642DOI Listing

Publication Analysis

Top Keywords

eimeria species
24
eimeria
10
species
9
pest rabbits
8
wild rabbits
8
detected sites
8
unique sequences
8
cargo nsw
8
rabbits
7
detected
7

Similar Publications

Development of a molecular assay for the determination of Eimeria tenella oocyst viability.

Parasitol Res

December 2024

Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control.

View Article and Find Full Text PDF

The association of parasites and diatoms has been previously reported as an important mechanism to control bacteria and parasites to avoid resistance to chemical usage. The aim of this study was to investigate the association between diatoms genus and parasites within the gastrointestinal compartments (GICs) of commercial fish in fisheries of the marine Pacific coast of Colombia (Buenaventura). A total of 104 GICs from marine fish were sampled.

View Article and Find Full Text PDF

Global prevalence of lagomorpha coccidiosis from 1951 to 2024: A systematic review and meta-analysis.

Res Vet Sci

December 2024

School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, China. Electronic address:

The global prevalence of coccidia infection in lagomorphs and potential risk factors were investigated through a meta-analysis of 149 studies published between 1951 and 2024. The pooled prevalence of Eimeriidae, Sarcocystidae and Cryptosporidiidae was found to be 66.0 %, 8.

View Article and Find Full Text PDF

Coccidiosis, infection with protozoan parasites of genus Eimeria, is a major problem in poultry husbandry world-wide. The disease is currently managed by coccidiostats and live vaccines, but these approaches are not sustainable. Hence, it is important to identify new means to control the infection and/or ameliorate its detrimental effects on gut health.

View Article and Find Full Text PDF

Vaccination with formulations targeting Eimeria maxima and Clostridium perfringens conferred comprehensive protection using a dual-infection challenge model of necrotic enteritis.

Poult Sci

December 2024

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA. Electronic address:

With increasing regulations restricting antibiotic use in animal feed, the need for alternative strategies to prevent and manage necrotic enteritis (NE) has become imperative. As a result, developing effective vaccines has emerged as a top priority for broiler chicken health management. Coccidial infections are a well-established predisposing factor for NE, underscoring the importance of controlling coccidiosis to help mitigate NE outbreaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!