With the rapid increase in waste activated sludge (WAS), it is urgent to develop appropriate dewatering processes to diminish sludge volume and improve disposal efficiency. In this study, an advanced oxidation process using electrolysis coupled with peroxymonosulfate (E/PMS) was applied to improve the dewaterability of WAS. The results indicated that the sludge water content (WC) and capillary suction time (CST) dropped from 98.4 ± 0.2% and 220.1 ± 2.3 s to 70.7 ± 0.8% and 63.0 ± 1.2 s, respectively, under the following conditions: an electrolysis voltage of 20 V, an electrolysis time of 20 min, and 200 mg/g TS PMS. The increase in sludge zeta potential, surface hydrophobicity, and flowability indicated a significant improvement in sludge dewaterability. SO, O•H, and O1 generated in the E/PMS process were responsible for the improvement of WAS dewaterability. These reactive oxygen species damaged extracellular polymeric substances (EPS), decreased fluorescent EPS components, and transformed the extracellular protein secondary structures by influencing the H-bond actions that maintain the α-helix. The bound water content, and apparent viscosity of WAS were found to be reduced, which was also attributed to an increase in dewatering capacity. Additionally, E/PMS treatment enhanced the degradation of organic matter in sludge and reduced the toxicity of the filtrate as well as the bioavailability of heavy metals. The cost analysis found that the E/PMS process was relatively economical and has great potential for practical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135865 | DOI Listing |
Environ Res
January 2025
Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam. Electronic address:
Many studies have displayed that freeze-thaw (F/T) conditioning is an environmentally friendly approach of improving sludge dewaterability. However, Initial water content (IWC) has a strong influence on the efficiency of the F/T method in conditioning sludge dewatering performance. Finding the most suitable F/T parameters for sludge with different IWCs is a critical issue that needs to be solved.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States. Electronic address:
In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, Tamilnadu, India. Electronic address:
Currently, Advanced Reduction Process (ARP) is gaining popularity as an alternative to Advanced Oxidation Process (AOP). Though UV/Sulfite process is effective in degrading organic compounds, no investigation has been done using ARP to improve sludge dewaterability. Here, effect of two different ARP's (UV/Sulfite; UV/Sulfide) that generates hydrated electron (e) and hydrogen atom (H•) in enhancing sludge dewatering was explored.
View Article and Find Full Text PDFJ Environ Manage
January 2025
National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China. Electronic address:
Dewatering of waste activated sludge is a necessary step for achieving subsequent reduction, stabilization, and resource utilization. In this study, Fe/periodate (PI) coupled with polyoxometalates (POMs) conditioning was tested for realizing sludge deep dewatering. After the addition of POMs (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!