A tyrosine catabolic intermediate 4-hydroxyphenylpyruate attenuates murine endotoxic shock by blocking NLRP3 inflammasome activation.

Int Immunopharmacol

Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 22104, China. Electronic address:

Published: October 2022

The metabolic alterations of amino acid metabolism are closely associated with inflammatory response. However, relatively little is known about the roles of phenylalanine (Phe)/tyrosine (Tyr) catabolites during inflammation. Nitisinone (NTBC) is an orphan drug used to treat hereditary tyrosinemia type I potentially by changing Phe/Tyr metabolic flow. In this study, we used NTBC as a tool to investigate the potential role of the Phe/Tyr catabolic pathway in inflammatory responses. We found that NTBC was effective in tempering the bacterial endotoxin lipopolysaccharide (LPS)-induced septic shock in mice. Mechanistically, the protective effect was related to the accumulation of a Phe/Tyr catabolic intermediate, 4-hydroxyphenylpyruvate (4-HPP), induced by the NTBC treatment. 4-HPP could inhibit NLRP3 inflammasome priming and activation processes and therefore reduce IL-1β release and pyroptosis. Like NTBC, 4-HPP was also effective in attenuating endotoxic shock in mice. Our results suggest the Phe/Tyr catabolic pathway as a potential immunoregulatory hub that may be exploited therapeutically to alleviate inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109098DOI Listing

Publication Analysis

Top Keywords

phe/tyr catabolic
12
catabolic intermediate
8
endotoxic shock
8
nlrp3 inflammasome
8
catabolic pathway
8
shock mice
8
ntbc
5
tyrosine catabolic
4
intermediate 4-hydroxyphenylpyruate
4
4-hydroxyphenylpyruate attenuates
4

Similar Publications

Article Synopsis
  • Chitosan and alginate are safe, biodegradable materials that stabilize biotherapeutics by encapsulating them in nanocarriers.
  • The study focused on a peptide from stone fish that showed 94.43% ACE-inhibitory activity, which was successfully loaded into nanoparticles made from alginate and chitosan.
  • The optimized nanoparticles demonstrated effective size, stability, and a significant blood pressure-lowering effect in hypertensive rats, indicating their potential for use in pharmaceuticals and food industries.
View Article and Find Full Text PDF

An off-the-shelf Agilent 7100 capillary electrophoresis (CE) instrument was employed for the automated processing and analysis of dried blood spots (DBSs) collected by Capitainer®B volumetric devices. Solutions for DBS elutions were transferred directly into CE vials through a separation capillary by the application of an auxiliary nitrogen gas connected to the external pressure line of the CE instrument. This allowed for liquid handling at pressures up to 15 bar and enabled the use of a single capillary for rapid DBS processing and efficient CE separations.

View Article and Find Full Text PDF

GTP-binding proteins are essential molecular switches that regulate a wide range of cellular processes. Their function relies on the specific recognition and binding of guanine within their binding pockets. This study aims to elucidate the molecular determinants underlying this recognition.

View Article and Find Full Text PDF

Brevibacterium enzymes as biological tools for ochratoxin A detoxification in dairy foods.

Int J Food Microbiol

January 2025

Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain. Electronic address:

The origin of ochratoxin A (OTA) in cheeses is mainly due to mould growth during the ripening process, and to a lesser extent, to the use of OTA-contaminated milk in cheese production. Bacterial smear-ripened cheeses developed a smear microbiota on their rind during ripening that greatly contributes to its typical aroma and texture. Bacteria from the Brevibacterium genus belong to the typical smear microbiota of cheeses.

View Article and Find Full Text PDF

Structural and biochemical analyses reveal quinic acid inhibits DAHP synthase a key player in shikimate pathway.

Arch Biochem Biophys

January 2025

Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India. Electronic address:

Article Synopsis
  • The shikimate pathway is crucial for making aromatic amino acids but isn't found in animals, making its enzymes targets for new antibiotics.
  • Researchers investigated quinic acid (QA) as a potential inhibitor of the DAHPS enzyme from the bacteria Providencia alcalifaciens, finding that it binds similarly to phenylalanine and has comparable binding affinities.
  • QA also showed inhibitory effects on various bacterial species, suggesting it could be developed into a new antimicrobial agent targeting the shikimate pathway for treating infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!