Contrasting the amygdala activity and functional connectivity profile between antidepressant-free participants with major depressive disorder and healthy controls: A systematic review of comparative fMRI studies.

Psychiatry Res Neuroimaging

Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario, M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, M5B 1T8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada. Electronic address:

Published: September 2022

Functional neuroimaging research suggests that the amygdala is implicated in the pathophysiology of major depressive disorder (MDD). This systematic review aimed to identify consistently reported amygdala activity and functional connectivity (FC) abnormalities in antidepressant-free participants with MDD as compared to healthy controls at baseline (i.e., before treatment initiation or experimental manipulation). A search for relevant published studies and registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase) and ClinicalTrials.gov with an end date of March 7th, 2022. Fifty published studies and two registered clinical trials were included in this review. Participants with MDD frequently exhibited amygdala hyperactivity in response to negative stimuli, abnormal event-related amygdala-anterior cingulate cortex (ACC) FC, and abnormal resting-state amygdala FC with the insula and the prefrontal, temporal, and parietal cortices. Decreased resting-state FC was consistently found between the amygdala and the orbitofrontal cortex, striatum, cerebellum, and middle/inferior frontal gyri. Due to the limited number of studies examining resting-state amygdala activity and FC with specific subregions of interest, including those within the ACC, further investigation is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2022.111517DOI Listing

Publication Analysis

Top Keywords

amygdala activity
12
activity functional
8
functional connectivity
8
antidepressant-free participants
8
major depressive
8
depressive disorder
8
healthy controls
8
systematic review
8
participants mdd
8
published studies
8

Similar Publications

Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.

View Article and Find Full Text PDF

JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation.

Brain Res Bull

January 2025

Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China. Electronic address:

Background: Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP.

View Article and Find Full Text PDF

Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.

View Article and Find Full Text PDF

Clinical and biochemical factors associated with amygdalar metabolic activity.

NPJ Aging

January 2025

Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.

We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.

View Article and Find Full Text PDF

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!