In this work, hollow-fiber microporous membrane liquid-liquid extraction (HF-MMLLE) was associated with a 96-well plate system for the determination of estrone, 17-β-estradiol, estriol and 17-α-ethinylestradiol in urine samples. This method exhibited some advantages, such as low cost, easy application, high-throughput and environmentally-friendly aspects. The type of organic solvent to fill the membrane, ionic strength effect, sample dilution, extraction and desorption time, and desorption solvent were examined. After the optimizations, the conditions were comprised of 45 min of extraction, 1-octanol as organic solvent and 15% (w/v) of NaCl; methanol was used as desorption solvent, and the desorption time was fixed at 10 min. The dilution of the sample increased the sensitivity due to the reduction of matrix effects; thus, urine samples were diluted 40-fold. The limits of detection ranged from 0.03 μg L for 17-β-estradiol to 15 μg L for estrone, and the limits of quantification ranged from 0.1 μg L for 17-β-estradiol to 10 μg L for estrone. The intra-day precision varied from 1.0% for estriol to 13.3% for 17-α-ethinylestradiol, and inter-day precision varied from 7.3% for estrone to 18.1% for estriol. The relative recoveries varied from 82 to 118%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2022.123406 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFSci Adv
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Liaoning, Dalian, 116024, China.
Membrane technology has been explored for separating helium from hydrogen in natural gas reservoirs, a process that remains extremely challenging due to the sub-Ångstrom size difference between H and He molecules. Reverse-selective H/He separation membranes offer multiple advantages over conventional helium-selective membranes, which, however, suffer from low H/He selectivity. To address this hurdle, a novel approach is proposed to tune the ultra-micropores of carbon molecular sieves (CMS) membranes through fluorination of the polymer precursor.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. Electronic address:
A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO) nanowires. The prepared catalyst MnO@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
CYP2C19 gene single nucleotide polymorphisms (SNPs) should be considered in the clinical use of clopidogrel as they have important guiding value for predicting the risk of bleeding and thrombosis after clopidogrel treatment. The CRISPR/Cas system is increasingly used for SNP detection owing to its single-nucleotide mismatch specificity. Simultaneous detection of multiple SNPs for rapid identification of the CYP2C19 genotype is important, but there is no method to detect a wide variety of CYP2C19 SNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!