As the medical use of Cannabis is evolving there is a greater demand for high-quality products for patients. One of the main steps in the manufacturing process of medical Cannabis is drying. Most current drying methods in the Cannabis industry are relatively slow and inefficient processes. This article presents a drying method based on solid-state microwave (MW) that provides fast and uniform drying, and examines its efficiency for drying Cannabis inflorescences compared with the traditional drying method. We assessed 67 cannabinoids and 36 terpenoids in the plant in a range of drying temperatures (40°C, 50°C, 60°C, and 80°C). The identification and quantification of these secondary metabolites were done by chromatography methods. This method resulted in a considerable reduction of drying time, from several days to a few hours. The multiple frequency-phase combination states of the system allowed control and prediction of moisture levels during drying, thus preventing overdrying. A drying temperature of 50°C provided the most effective results in terms of both short drying time and preservation of the composition of the secondary metabolites compared with traditional drying. At 50°C, the chemical profile of phytocannabinoids and terpenoids was best kept to that of the original plant before drying, suggesting less degradation by chemical reactions such as decarboxylation. The fast-drying time also reduced the susceptibility of the plant to microbial contamination. Our results support solid-state MW drying as an effective postharvest step to quickly dry the plant material for improved downstream processing with a minimal negative impact on product quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874826 | PMC |
http://dx.doi.org/10.1089/can.2022.0051 | DOI Listing |
In recent years, image processing technology has been increasingly studied on intelligent unmanned platforms, and the differences in the shooting environment during tobacco baking pose challenges to image processing algorithms. To address this problem, an ensemble multi-dimensional randomization network (EMRNet) for intelligent recognition of tobacco baking stage is proposed. The first is to obtain the tobacco leaf area during the baking process.
View Article and Find Full Text PDFCell Tissue Bank
January 2025
Academic Ophthalmology, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute for Biological Sciences, Applied Ecology and Phycology, University Rostock, Rostock, Germany.
Streptofilum capillatum was recently described and immediately caught scientific attention, because it forms a phylogenetically deep branch in the streptophytes and is characterised by a unique cell coverage composed of piliform scales. Its phylogenetic position and taxonomic rank are still controversial discussed. In the present study, we isolated further strains of Streptofilum from biocrusts in sand dunes and Arctic tundra soil.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy. Electronic address:
The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!