Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep insights into and substantial enhancement of the effective anisotropy energy barrier for magnetization reversal () are vitally important for the technological applications of dysprosium(III)-based single-molecule magnets (Dy-SMMs). To fully refine the ligand-field effect on spin relaxation, four centrosymmetric {Dy} entities with formula [Dy(CHOH)L(COO)] (HL 2-hydroxy-'-((pyridin-2-yl)methylene)benzohydrazide) have been solvothermally prepared by varying the side groups of carboxylate coligands (COO, = CF for , H for , CH for , and CpFe for ). Structural analyses reveal that all of the Dy carriers in have the same NO donor environments, and the non-coordinative groups attached to the equatorial carboxylate bridges have not substantially changed the binding ability of the shortest Dy-O bonds located at the axial position of the ligand field. Interestingly, the side groups have monotonically decreased the zero-field barriers of these weak antiferromagnetically coupled {Dy} analogues from 721 K down to 379 K. Further electronic structure calculations demonstrate that the main magnetic axes of are highly dominated by these comparable Dy-O short bonds, and the tensors have produced gradually increased transverse components responsible significantly for the decreased barriers. Additionally, thermally assisted relaxations occur preferably through the second (for ) and the first (for ) Kramer doublets. These interesting findings afford a new side-group effect to comprehensively understand the magnetostructural relationships and advance the rational design of high-performance Dy-SMMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!