Computational Scientific Discovery in Psychology.

Perspect Psychol Sci

Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science.

Published: January 2023

Scientific discovery is a driving force for progress involving creative problem-solving processes to further our understanding of the world. The process of scientific discovery has historically been intensive and time-consuming; however, advances in computational power and algorithms have provided an efficient route to make new discoveries. Complex tools using artificial intelligence (AI) can efficiently analyze data as well as generate new hypotheses and theories. Along with AI becoming increasingly prevalent in our daily lives and the services we access, its application to different scientific domains is becoming more widespread. For example, AI has been used for the early detection of medical conditions, identifying treatments and vaccines (e.g., against COVID-19), and predicting protein structure. The application of AI in psychological science has started to become popular. AI can assist in new discoveries both as a tool that allows more freedom to scientists to generate new theories and by making creative discoveries autonomously. Conversely, psychological concepts such as heuristics have refined and improved artificial systems. With such powerful systems, however, there are key ethical and practical issues to consider. This article addresses the current and future directions of computational scientific discovery generally and its applications in psychological science more specifically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902966PMC
http://dx.doi.org/10.1177/17456916221091833DOI Listing

Publication Analysis

Top Keywords

scientific discovery
16
computational scientific
8
psychological science
8
discovery
4
discovery psychology
4
scientific
4
psychology scientific
4
discovery driving
4
driving force
4
force progress
4

Similar Publications

Aims: To elucidate the meaning of recovery for mothers who have experienced difficulties in child-rearing, using insights gained through their activities as mother-to-mother peer supporters.

Design: Phenomenological study.

Methods: From January to October 2022, semi-structured interviews were conducted with 11 mothers active as peer supporters at community child-rearing support centres in Japan.

View Article and Find Full Text PDF

Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae.

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries.

Database (Oxford)

December 2024

The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Originally developed to meet the challenges of genomic data deluge, GeniePool emerged as a pioneering platform, enabling efficient storage, accessibility, and analysis of vast genomic datasets, enabled due to its data lake architecture. Building on this foundation, GeniePool 2.0 advances genomic analysis through the integration of cutting-edge variant databases, such as CHM13-T2T, AlphaMissense, and gnomAD V4, coupled with the capability for variant co-occurrence queries.

View Article and Find Full Text PDF

Signaling pathway regulators in preimplantation embryos.

J Mol Histol

December 2024

Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.

Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!