Introduction: Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). However, poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug loads, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) has the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS.
Areas Covered: The review begins why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted.
Expert Opinion: HME is a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters for successfully preparing SEDDS via HME are identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17425247.2022.2112173 | DOI Listing |
J Food Drug Anal
December 2024
Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, 1036, Cyprus.
Pharmaceutical nanosuspensions, also called nanocrystals, are heterogeneous mainly aqueous dispersions of insoluble drug particles stabilised by surfactants and/or polymers. Nanosuspensions as liquid formulations suffer from instability. Solidification of nanosuspensions to solid dosage forms is a way to combine the advantages of nanocrystals with the advantages of the solid state.
View Article and Find Full Text PDFFood Chem
December 2024
Nano-biotechnology Key Laboratory of Hebei Province, State Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. Electronic address:
This study presented the well stable W1/O/W2 double emulsions stabilized by food-grade nanoparticles. Firstly, the nanoparticles were prepared based on soybean protein isolate and Hohenbuehelia serotina polysaccharides by physical effects, which had the elliptical morphology and the average particle size of 639.96 nm.
View Article and Find Full Text PDFGels
December 2024
Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan.
Egg sausages, an essential component of traditional Chinese hot pot cuisine, have specific storage requirements and are predominantly distributed through refrigerated channels. A significant consideration in the freezing of egg sausages pertains to syneresis and textural modifications that manifest in the protein gel structure upon thawing. This research investigated the efficacy of incorporating whey protein isolate, soy protein isolate (at concentrations of 0.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330 Etiler, Ankara, Türkiye.
Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modelling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.
View Article and Find Full Text PDFAbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!