Electronic fractal patterns in building Sierpinski-triangle molecular systems.

Phys Chem Chem Phys

Instituto de Física, Universidade Federal Fluminense, Niterói, Av. Litorânea sn, 24210-340, RJ, Brazil.

Published: August 2022

The Sierpinski triangle (ST) is a fractal mathematical structure that has been used to explore the emergence of flat bands in lattices of different geometries and dimensions in condensed matter. Here we look into fractal features in the electronic properties of ST flakes and molecular chains simulating experimental synthesized fractal nanostructures. We use a single-orbital tight binding model to study the fractal properties of the electronic states and the Landauer formalism to explore transport responses of the quasi 1D molecular chains. The self-similarity of the energy states is found comparing different ST orders and also amplifying the energy ranges investigated, for both flakes and quasi-1D systems. In particular, the results for the local density of states of the theoretical molecular chains proposed here exhibit quite similar spatial charge distribution of experimental STM reports. The analysis of the transport response of such all-carbon fractal molecular chains can be used as a guide to propose a variety of architectures in the synthesis of real new molecular chains.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02426hDOI Listing

Publication Analysis

Top Keywords

molecular chains
20
molecular
6
fractal
5
chains
5
electronic fractal
4
fractal patterns
4
patterns building
4
building sierpinski-triangle
4
sierpinski-triangle molecular
4
molecular systems
4

Similar Publications

Implementation of Time-Averaged Restraints with UNRES Coarse-Grained Model of Polypeptide Chains.

J Chem Theory Comput

January 2025

Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.

Time-averaged restraints from nuclear magnetic resonance (NMR) measurements have been implemented in the UNRES coarse-grained model of polypeptide chains in order to develop a tool for data-assisted modeling of the conformational ensembles of multistate proteins, intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs), many of which are essential in cell biology. A numerically stable variant of molecular dynamics with time-averaged restraints has been introduced, in which the total energy is conserved in sections of a trajectory in microcanonical runs, the bath temperature is maintained in canonical runs, and the time-average-restraint-force components are scaled up with the length of the memory window so that the restraints affect the simulated structures. The new approach restores the conformational ensembles used to generate ensemble-averaged distances, as demonstrated with synthetic restraints.

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.

Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.

View Article and Find Full Text PDF

Ganglioglioma, a glioneuronal neoplasm, typically presents in adolescents' temporal lobes. While pediatric brainstem gangliogliomas (BSGGs) are well documented, adult BSGGs are limited, resulting in a lack of comprehensive understanding of their pathophysiology and prognosis. A 41-year-old woman who presented with dizziness and numbness in her right upper extremity and right face underwent radiological examination.

View Article and Find Full Text PDF

Mitochondrial disease and epilepsy in children.

Front Neurol

January 2025

Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.

Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!