Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363115PMC
http://dx.doi.org/10.7554/eLife.76451DOI Listing

Publication Analysis

Top Keywords

tissue repair
12
hcar1 knockout
12
lactate receptor
8
receptor hcar1
8
knockout mice
8
tissue regeneration
8
wildtype mice
8
hcar1
6
tissue
5
mice
5

Similar Publications

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Novel index for the evaluation of wound healing following erupted tooth extraction.

Minerva Dent Oral Sci

January 2025

Department of Surgical, Medical, Molecular and Critical Area Pathology, University Hospital of Pisa, University of Pisa, Pisa, Italy.

Background: Understanding healing of the alveolar process is crucial for immediate implant, alveolar ridge preservation and guided bone regeneration procedures, and to evaluate it several different scales have been proposed; however, all have different characteristics and seem to miss a standardization allowing for an objective and dichotomous evaluation of the different aspects of wound healing. The objective of the present study is to propose and apply, in real clinical scenarios, a novel index for the objective evaluation of wound healing following erupted tooth extraction.

Methods: Healthy patients in need of a single tooth extraction were enrolled and re-examined at 7, 14 and 21 days after the extraction using the novel index proposed.

View Article and Find Full Text PDF

Reconstruction of the Severe Cervical Scar Contracture Using a Combination of the Pre-expanded Bipedicled Forehead Flap and Lower Trapezius Musculocutaneous Flap.

J Craniofac Surg

January 2025

Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shijingshan District, Beijing, China.

Reconstructing severe cervical scar contractures (SCSC) remains a considerable challenge. This study presents a novel approach to SCSC reconstruction using a combination of pre-expanded bipedicled forehead and lower trapezius musculocutaneous flaps. A retrospective analysis was conducted on 25 patients who underwent this procedure between April 2004 and July 2020.

View Article and Find Full Text PDF

Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring.

J Mater Chem B

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.

View Article and Find Full Text PDF

Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!