Coronavirus disease 2019 (COVID-19) has attracted significant attention of researchers from various disciplines since the end of 2019. Although the global epidemic situation is stabilizing due to vaccination, new COVID-19 cases are constantly being discovered around the world. As a result, lung computed tomography (CT) examination, an aggregated identification technique, has been used to ameliorate diagnosis. It helps reveal missed diagnoses due to the ambiguity of nucleic acid polymerase chain reaction. Therefore, this study investigated how quickly and accurately hybrid deep learning (DL) methods can identify infected individuals with COVID-19 on the basis of their lung CT images. In addition, this study proposed a developed system to create a reliable COVID-19 prediction network using various layers starting with the segmentation of the lung CT scan image and ending with disease prediction. The initial step of the system starts with a proposed technique for lung segmentation that relies on a no-threshold histogram-based image segmentation method. Afterward, the GrabCut method was used as a post-segmentation method to enhance segmentation outcomes and avoid over-and under-segmentation problems. Then, three pre-trained models of standard DL methods, including Visual Geometry Group Network, convolutional deep belief network, and high-resolution network, were utilized to extract the most affective features from the segmented images that can help to identify COVID-19. These three described pre-trained models were combined as a new mechanism to increase the system's overall prediction capabilities. A publicly available dataset, namely, COVID-19 CT, was used to test the performance of the proposed model, which obtained a 95% accuracy rate. On the basis of comparison, the proposed model outperformed several state-of-the-art studies. Because of its effectiveness in accurately screening COVID-19 CT images, the developed model will potentially be valuable as an additional diagnostic tool for leading clinical professionals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348188 | PMC |
http://dx.doi.org/10.1111/exsy.13010 | DOI Listing |
iScience
January 2025
Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730000, China.
Flax, as a functional crop with rich essential fatty acids and nutrients, is important in nutrition and industrial applications. However, the current process of flax seed detection relies mainly on manual operation, which is not only inefficient but also prone to error. The development of computer vision and deep learning techniques offers a new way to solve this problem.
View Article and Find Full Text PDFClin EEG Neurosci
January 2025
Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, India.
Motor Imagery (MI) electroencephalographic (EEG) signal classification is a pioneer research branch essential for mobility rehabilitation. This paper proposes an end-to-end hybrid deep network "Spatio Temporal Inception Transformer Network (STIT-Net)" model for MI classification. Discrete Wavelet Transform (DWT) is used to derive the alpha (8-13) Hz and beta (13-30) Hz EEG sub bands which are dominant during motor tasks to enhance the performance of the proposed work.
View Article and Find Full Text PDFSingle-pixel imaging (SPI) using deep learning networks, e.g., convolutional neural networks (CNNs) and vision transformers (ViTs), has made significant progress.
View Article and Find Full Text PDFSci Rep
January 2025
Amal Jyothi College of Engineering (Autonomous), Kanjirappally, Kerala, India.
In agriculture, promptly and accurately identifying leaf diseases is crucial for sustainable crop production. To address this requirement, this research introduces a hybrid deep learning model that combines the visual geometric group version 19 (VGG19) architecture features with the transformer encoder blocks. This fusion enables the accurate and précised real-time classification of leaf diseases affecting grape, bell pepper, and tomato plants.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Applied Sciences, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012, INDIA.
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!