AI Article Synopsis

  • The modification of biomolecules through chemical processes is fundamental to the physiology of living organisms, but some processes, like sulfo-conjugation by sulfotransferases (SULT), are less understood, especially in insects like mosquitoes.
  • This research focuses on a specific mosquito SULT enzyme (AGAP001425), revealing its unique expression patterns and potential role in the reproductive physiology of mosquitoes, indicating its importance for insect management strategies.
  • Structural studies of the enzyme show significant differences compared to other SULTs, particularly in its dynamic region, which could inform the development of inhibitors to disrupt its function and help control mosquito populations.

Article Abstract

The temporary or permanent chemical modification of biomolecules is a crucial aspect in the physiology of all living species. However, while some modules are well characterised also in insects, others did not receive the same attention. This holds true for sulfo-conjugation that is catalysed by cytosolic sulfotransferases (SULT), a central component of the metabolism of endogenous low molecular weight molecules and xenobiotics. In particular, limited information is available about the functional roles of the mosquito predicted enzymes annotated as SULTs in genomic databases. The herein described research is the first example of a biochemical and structural study of a SULT of a mosquito species, in general, and of the malaria vector in particular. We confirmed that the AGAP001425 transcript displays a peculiar expression pattern that is suggestive of a possible involvement in modulating the mosquito reproductive tissues physiology, a fact that could raise attention on the enzyme as a potential target for insect-containment strategies. The crystal structures of the enzyme in alternative ligand-bound states revealed elements distinguishing SULT-001425 from other characterized SULTs, including a peculiar conformational plasticity of a discrete region that shields the catalytic cleft and that could play a main role in the dynamics of the reaction and in the substrate selectivity of the enzyme. Along with further biochemical studies, our structural investigations could provide a framework for the discovery of small-molecule inhibitors to assess the effect of interfering with SULT-001425-mediated catalysis at the organismal level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356239PMC
http://dx.doi.org/10.1016/j.crstbi.2022.07.001DOI Listing

Publication Analysis

Top Keywords

biochemical structural
8
malaria vector
8
reproductive tissues
8
structural analysis
4
analysis cytosolic
4
cytosolic sulfotransferase
4
sulfotransferase malaria
4
vector overexpressed
4
overexpressed reproductive
4
tissues temporary
4

Similar Publications

Real-world data on treatment outcomes or the quality of large-scale chronic hepatitis B (CHB) treatment programs in sub-Saharan Africa (SSA) is extremely difficult to obtain. In this study, we aimed to provide data on the prevalence and incidence of mortality, loss to follow-up (LFTU), and their associated factors in patients with CHB in three treatment centres in Eritrea. Additional information includes baseline clinical profiles of CHB patients initiated on nucleos(t)ide analogue (NUCs) along with a comparison of treatment with Tenofovir disoproxil fumarate (TDF) vs.

View Article and Find Full Text PDF

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential.

View Article and Find Full Text PDF

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Low-Intensity Pulsed Ultrasound Delays the Onset of Osteoporosis and Dyslipidemia in Mice With Premature Ovarian Insufficiency.

J Ultrasound Med

January 2025

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Objectives: The pathogenesis of premature ovarian insufficiency (POI) not only affects the ovarian structure and function but also gives rise to complications such as osteoporosis and dyslipidemia. Although low-intensity pulsed ultrasound (LIPUS) has been proven effective in treating POI, its impact on the associated complications remains unexplored. Therefore, this study aims to investigate the effects of LIPUS irradiation on osteoporosis and dyslipidemia in a mouse model of POI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!