Microspore embryogenesis is an effective method of obtaining double haploid (DH) lines in only 1 year. However, the microspore embryogenesis protocol was not efficient in pakchoi. This study aimed to establish an effective microspore culture protocol in pakchoi for hybrid breeding. The embryos were obtained from three genotypes (18SY01, 18SY02, 18SY03), but the frequency of microspore embryogenesis was significantly different. Globular embryos from three genotypes were placed into a rotary shaker (50 r/min, 25 ℃) for further culture to improve microspore embryogenesis and plantlet regeneration without callus development. Shake culture not only increased the frequency of cotyledonary embryos but also accelerated microspore embryogenesis in the NLN-13 liquid medium. Moreover, the doubled haploid rates of regenerated plants for the three genotypes were above 50%. The morphological characters and plot yield of DH lines were identified, and there were significant differences between them. According to the measurement of the self-compatibility index, all the DH lines were self-incompatible. Furthermore, the hybrid combination was prepared with the selected DH lines and the pakchoi genic male sterile line GMS010 to develop excellent hybrids. This work contributes to accelerating the application of microspore embryogenesis and supplying the DH lines in pakchoi hybrid breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-022-01803-9 | DOI Listing |
Protoplasma
January 2025
College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, China.
Microspore culture is an efficient and rapid method that produces doubled haploid (DH) lines for hybrid breeding in crops and vegetables. However, the low frequency of microspore embryogenesis and spontaneous diploidization in Chinese kale still require improvement. In the present work, an efficient microspore culture protocol was constructed and used for DH producing in Chinese kale breeding.
View Article and Find Full Text PDFPlant Sci
February 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain. Electronic address:
In vivo, microspores in the anthers follow the gametophytic development pathway, culminating in the formation of pollen grains. Conversely, in vitro, under stress treatments, microspores can be reprogrammed into totipotent cells, initiating an embryogenic pathway that produces haploid and double-haploid embryos, which are important biotechnological tools in plant breeding. There is growing evidence that epigenetic reprogramming occurs during microspore embryogenesis through DNA methylation, but less is known about the role of histone modifications.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC), Madrid, Spain.
Plants (Basel)
October 2024
Department of Herbal Crop Research, NIHHS, RDA, Eumseong 27709, Republic of Korea.
Anther and microspore cultures are efficient methods for inducing haploids in plants. The microspore culture by chromosome-doubling method can produce double haploid lines, developing pure lines within the first or second generations. This study aimed to induce haploid plants in using the shed-microspore culture method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!