Harmful algal blooms (HABs) are a growing concern to public health and aquatic ecosystems. Long-term water monitoring conducted by hand poses several limitations to the proper implementation of water safety plans. This work combines automatic high-frequency monitoring (AFHM) systems with machine learning (ML) techniques to build a data-driven chlorophyll-a (Chl-a) soft-sensor. Massive data for water temperature, pH, electrical conductivity (EC) and system battery were taken for three years at intervals of 15 min from two different areas of As Conchas freshwater reservoir (NW Spain). We designed a set of soft-sensors based on compact and energy efficient ML algorithms to infer Chl-a fluorescence by using low-cost input variables and to be deployed on buoys with limited battery and hardware resources. Input and output aggregations were applied in ML models to increase their inference performance. A component capable of triggering a 10 [Formula: see text]g/L Chl-a alert was also developed. The results showed that Chl-a soft-sensors could be a rapid and inexpensive tool to support manual sampling in water bodies at risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360045PMC
http://dx.doi.org/10.1038/s41598-022-17299-5DOI Listing

Publication Analysis

Top Keywords

machine learning
8
chlorophyll soft-sensor
4
soft-sensor based
4
based machine
4
learning models
4
models algal
4
algal bloom
4
bloom predictions
4
predictions harmful
4
harmful algal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!