Pancreatic β-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise β-cell identity is unknown. We show here under reversible, chronic stress conditions β-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of β-cell function and identity. Upon recovery from stress, β-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while β-cells show resilience to episodic ER stress, when episodes exceed a threshold, β-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest β-cell adaptive exhaustion contributes to diabetes pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360004PMC
http://dx.doi.org/10.1038/s41467-022-32425-7DOI Listing

Publication Analysis

Top Keywords

chronic stress
12
stress
8
stress episodes
8
β-cell identity
8
β-cell
5
adaptation chronic
4
stress enforces
4
enforces pancreatic
4
pancreatic β-cell
4
β-cell plasticity
4

Similar Publications

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

December 2024

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

We present a case of a 73-year-old woman with a medical history significant for hyperlipidemia, on pravastatin, who developed Takotsubo cardiomyopathy following a diagnosis of osteoporosis. She presented to the Emergency Department with acute transient left arm pain that resolved spontaneously. Investigations revealed elevated troponin levels, non-specific electrocardiographic changes, no significant coronary artery disease on angiography, and left ventricular systolic dysfunction, findings consistent with Takotsubo cardiomyopathy.

View Article and Find Full Text PDF

Leaky gut syndrome (LGS) is caused by intestinal epithelial injury and increased intestinal permeability due to a variety of factors, including chronic stress, inflammatory bowel disease, diabetes, surgery, and chemotherapy, resulting in an increased influx of matter from the intestinal lumen causing constipation and bacteremia. To our knowledge, this is the first known case of LGS along with () bacteremia in a neurodegenerative disease patient. The patient was an 81-year-old male with a history of Alzheimer's disease, cerebral infarction, and diverticulitis in a psychiatric hospital, fed via a nasogastric tube.

View Article and Find Full Text PDF

Introduction: The transition from low to high altitude environments is associated with a multifaceted series of physiological and psychological alterations that manifest over time. These changes are intricately intertwined, with physiological acclimatization primarily mediated through the regulation of hypoxia-inducible factor (HIF), which orchestrates the expression of critical molecules and hormones. This process extends to encompass the epigenome, metabolism, and other regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!