A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrogen removal and microbial mechanisms in a novel tubular bioreactor-enhanced floating treatment wetland for the treatment of high nitrate river water. | LitMetric

Nitrogen removal and microbial mechanisms in a novel tubular bioreactor-enhanced floating treatment wetland for the treatment of high nitrate river water.

Water Environ Res

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.

Published: August 2022

A novel tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was developed for the in situ treatment of high nitrate river water. When compared with the enhanced floating treatment wetland (EFTW), the TB-EFTW system achieved 30% higher total nitrogen removal efficiency. Further, the average TN level of the TB-EFTW effluent was below the Grade IV requirement (1.5 mg/L) specified in Chinese standard (GB3838-2002). Microbial analysis revealed that both aerobic and anoxic denitrifying bacteria coexisted in the new system. The relative abundance of aerobic and anoxic denitrifiers were 42.69% and 22% at the middle and end of the tubular bioreactor (TB), respectively. It is reasonable to assume that effective nitrogen removal can mainly be attributed to the addition of solid carbon source and the spatial difference in DO distribution (oxic-anoxic areas in sequence) inside the TB. The initial investment cost and operating costs associated with the TB-EFTW system are approximately 14,000 and 3500 yuan per 1000 m river water, respectively. Considering its low cost, minimal maintenance requirements, and effective nitrogen removal, this newly developed system can be regarded as a promising technology for treating high nitrate river water. PRACTITIONER POINTS: A novel TB-EFTW system was developed to upgrade traditional in situ treatment techniques. The TB-EFTW could achieve 30% higher nitrogen removal efficiency than EFTWs. Both aerobic and anoxic denitrifying bacteria coexisted in the system. The system shows better technical and economic performance compared with routine techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.10767DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
20
river water
16
floating treatment
12
treatment wetland
12
high nitrate
12
nitrate river
12
tb-eftw system
12
aerobic anoxic
12
novel tubular
8
tubular bioreactor-enhanced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!