Biomechanics of healthy subjects during exercise on a simulated vibration isolation and stabilization system.

Life Sci Space Res (Amst)

Department of Medical Engineering, University of South Florida, 4202 E Fowler Ave, ENG 030, Tampa, FL 33620, United States; Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Ave, ENB 118, Tampa, FL 33620, United States. Electronic address:

Published: August 2022

With long-term space flights being planned for the Moon and Mars, proper countermeasures must be taken to facilitate human health in microgravity environments. Exercise is a vital countermeasure used to prevent bone and muscle loss, among other health interests. Future exploration missions encourage creating an exercise device that is both compact and can be used to properly execute exercise by the astronauts. Current design considerations include interfacing an exercise device with a vibration isolation and stabilization (VIS) system, which is necessary for protecting the spacecraft and sensitive experiments from harmful vibrations developed during repetitive exercise. This human factor study assesses the feasibility of a VIS system exercise device by using the Computer Assistive Rehabilitation Environment (CAREN) to simulate characteristics of the system. The CAREN includes a 6 degree of freedom (DOF) platform, force plates and a motion capture system. An algorithm was developed using the D-Flow software to move the platform in 1 and 2 DOF sinusoidal responses. Multiple sinusoidal frequencies for platform motion during subject exercise were evaluated. Four subjects completed squat and row exercises on the CAREN while their motion was recorded. Kinematic and kinetic data were collected from each subject. Trials were executed with 1-2 DOF motion in heave and pitch. Results conclude that subjects completed exercises with adequate range of motion (ROM) and ground reaction forces (GRF) during each trial. Certain environments, such as movement at a slower frequency (0.10 Hz) and movement of heave and pitch at differing frequencies, caused loss of balance indicated by grabbing of the handrail in some subjects and difficulty in synchronization between the subjects and the platform. This indicates that VIS system design should focus on frequency of movements centering around subjects' natural exercise frequencies if possible. This study serves as a proof of concept for using CAREN and programming tool D-Flow to simulate platform movement on VIS system design. Further experimentation will test more detailed designs, including active and passive systems that will move based on real-time subject data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2022.05.003DOI Listing

Publication Analysis

Top Keywords

vis system
16
exercise device
12
exercise
9
vibration isolation
8
isolation stabilization
8
subjects completed
8
heave pitch
8
system design
8
system
7
subjects
5

Similar Publications

We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.

View Article and Find Full Text PDF

Purpose: Extracellular vesicles (EVs) secreted by non-pigmented ciliary epithelial (NPCE) cells under oxidative stress may contribute to primary open-angle glaucoma (POAG) pathogenesis by altering gene expression in human trabecular meshwork (HTM) cells. This study investigated the impact of microRNAs (miRNAs) carried by NPCE-derived EVs on HTM cell gene expression under oxidative stress conditions.

Methods: NPCE cells were exposed to oxidative stress, and EVs were isolated from control and stressed cells.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!