Impact of nitric oxide in liver cancer microenvironment.

Nitric Oxide

Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain. Electronic address:

Published: November 2022

The pro- or antitumoral properties of nitric oxide (NO) are dependent on local concentration, redox state, cellular status, duration of exposure and compartmentalization of NO generation. The intricate network of the tumor microenvironment (TME) is constituted by tumor cells, stromal and immune cells surrounded by active components of extracellular matrix that influence the biological behavior and, consequently, the treatment and prognosis of cancer. The review describes critical events in the crosstalk of cellular and stromal components in the TME, with special emphasis in the impact of NO generation in the regulation of hepatocellular carcinoma (HCC). The increased expression of nitric oxide synthase (NOS) in tumors and NO-end products in plasma have been associated with poor prognosis of cancer. We have assessed the level of the different isoforms of NOS in tumors and its relation to cell proliferation and death markers, and cell death receptor expression in tumors, and apoptotic markers and ligands of TNF-α receptor family in blood from a cohort of patients with HCC from different etiologies submitted to orthotopic liver transplantation (OLT). The high levels of NOS2 in tumors were associated with low plasma concentration of apoptotic markers (M30 and M65), FasL and TNF-α in HCV patients. By contrast, the low levels of NOS2 in tumors from alcohol-derived patients was associated with increased Trail-R1 expression in tumors, and circulating Trail levels compared to observed in plasma from HCV- and alcohol + HCV-derived patients. This study reinforces the association between increased NOS2 expression and potential risk of low patients' survival in HCC. However, a differential functional relevance of NOS expression in HCC seems to be influenced by etiologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2022.07.006DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
prognosis cancer
8
expression tumors
8
apoptotic markers
8
levels nos2
8
nos2 tumors
8
tumors
6
expression
5
impact nitric
4
oxide liver
4

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:

Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!