A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of an Integrated Spectroscopy and Classification Platform for Point-of-Care Core Needle Biopsy Assessment: Performance Characteristics from Ex Vivo Renal Mass Biopsies. | LitMetric

Purpose: To evaluate a transmission optical spectroscopy instrument for rapid ex vivo assessment of core needle cancer biopsies (CNBs) at the point of care.

Materials And Methods: CNBs from surgically resected renal tumors and nontumor regions were scanned on their sampling trays with a custom spectroscopy instrument. After extracting principal spectral components, machine learning was used to train logistic regression, support vector machines, and random decision forest (RF) classifiers on 80% of randomized and stratified data. The algorithms were evaluated on the remaining 20% of the data set held out during training. Binary classification (tumor/nontumor) was performed based on a decision threshold. Multinomial classification was also performed to differentiate between the subtypes of renal cell carcinoma (RCC) and account for potential confounding effects from fat, blood, and necrotic tissue. Classifiers were compared based on sensitivity, specificity, and positive predictive value (PPV) relative to a histopathologic standard.

Results: A total of 545 CNBs from 102 patients were analyzed, yielding 5,583 spectra after outlier exclusion. At the individual spectra level, the best performing algorithm was RF with sensitivities of 96% and 92% and specificities of 90% and 89%, for the binary and multiclass analyses, respectively. At the full CNB level, RF algorithm also showed the highest sensitivity and specificity (93% and 91%, respectively). For RCC subtypes, the highest sensitivity and PPV were attained for clear cell (93.5%) and chromophobe (98.2%) subtypes, respectively.

Conclusions: Ex vivo spectroscopy imaging paired with machine learning can accurately characterize renal mass CNB at the time of tissue acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204606PMC
http://dx.doi.org/10.1016/j.jvir.2022.07.027DOI Listing

Publication Analysis

Top Keywords

core needle
8
renal mass
8
spectroscopy instrument
8
machine learning
8
sensitivity specificity
8
highest sensitivity
8
evaluation integrated
4
spectroscopy
4
integrated spectroscopy
4
spectroscopy classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!