Due to rapid urbanization and globalization, an enormous use of pharmaceuticals and personal care products (PPCPs) has resulted their excessive release in water bodies leading to several environmental issues. This release into the environment takes place via household sewage, hospital effluents, manufacturing units and landfill sites etc. The pharmaceuticals and personal care products (PPCPs) are recently listed as emerging contaminants having many adverse effects towards aquatic life, human beings, and the whole ecosystem. The alarming threats of PPCPs demand efficient methods to cope up their hazardous impacts. The conventional wastewater remediations are not specifically designed for the removal of PPCPs and hence, they require advanced technologies and materials for their elimination to ensure water safety. Among various methods employed so far, photocatalysis is considered to be one of the most cost effective and eco-friendly method but it requires a suitable candidate as a photocatalyst. Thanks to the magnetic nanocomposites which have improved the limitations (poor stability, agglomeration, and difficult separation, etc.) of classically used nanomaterials. Magnetic nanocomposites contain at least one component having magnetic properties making their separation easy from the aqueous media after the photodegradation phenomenon. These can be further functionalized with other materials to obtain maximum advantage as photocatalyst. Few examples of such functionalized nanocomposites are inorganic material based magnetic nanocomposites, carbon based magnetic nanocomposites, biomaterial based magnetic nanocomposites, metal-organic framework based magnetic nanocomposites and polymer based magnetic nanocomposites etc. This review covers the global environmental issue of water pollution especially with respect to the PPCPs, their occurrence in aqueous environment and toxic effects on living beings. A comprehensive discussion of the recently reported functionalized magnetic nanocomposites for the photocatalytic removal of PPCPs from water is the main aim of this review. The synthetic/morphological approaches of various functionalized magnetic composites and their mechanism of action are also elaborated. The possible research challenges in the field of magnetic nanocomposites and future research directions are discussed to apply magnetic nanocomposites for wastewater treatment in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157683 | DOI Listing |
Sci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
To protect against harmful electromagnetic interference (EMI), it is crucial to fabricate composite with high total electromagnetic shielding efficiency (SE); In this study, FeNi-NiFeO-SiO nanoparticles (NPs) were synthesized using one-pot method and decorated on carbon nanotube's (CNT) sidewall. The final product was magnetic-ceramic/conductive (FeNi-NiFeO-SiO/MWCNT) nanocomposite. The EMI shielding characteristic of FeNi-NiFeO-SiO NPs and FeNi-NiFeO-SiO/MWCNT nanocomposite was investigated in the range of X and Ku frequency band.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.
Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania.
Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!