Developability Assessments of Monoclonal Antibody Candidates to Minimize Aggregation During Large-Scale Ultrafiltration and Diafiltration (UF-DF) Processing.

J Pharm Sci

Bioengineering Program, School of Engineering, The University of Kansas, 1530 W 15(th) Street, Lawrence, KS 66045, USA; Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15(th) Street, Lawrence, KS 66045, USA. Electronic address:

Published: November 2022

Therapeutic proteins are subjected to a variety of stresses during manufacturing, storage or administration, that often lead to undesired protein aggregation and particle formation. Ultrafiltration-diafiltration (UF-DF) processing of monoclonal antibodies (mAbs) is one such manufacturing step that has been shown to result in such physical degradation. In this work, we explore the use of different analytical techniques and lab-scale setups as methodologies to predict and rank-order the aggregation potential of four different mAbs during large-scale UF-DF processing. In the first part of the study, a suite of biophysical techniques was applied to assess differences in their inherent bulk protein properties including conformational and colloidal stability in a PBS buffer. Additionally, the inherent interfacial properties of these mAbs in PBS were measured using a Langmuir trough technique. In the next part of the study, several different scale-down lab models were evaluated including a lab bench-scale UF-DF setup, mechanical stress (shaking/stirring) studies in vials, and application of interfacial dilatational stress using a Langmuir trough to assess protein particle formation in different UF-DF processing buffers. Taken together, our results demonstrate the ability of a Langmuir-trough methodology to accurately predict the mAb instability profile observed during large scale UF-DF processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2022.08.001DOI Listing

Publication Analysis

Top Keywords

uf-df processing
20
particle formation
8
langmuir trough
8
uf-df
6
processing
5
developability assessments
4
assessments monoclonal
4
monoclonal antibody
4
antibody candidates
4
candidates minimize
4

Similar Publications

Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) are pivotal for the curative effects of mesenchymal stromal cells, but their translation into clinical products is hindered by the technical challenges of scaled production and purification. Ultrafiltration, a pressure-driven membrane separation method, is well known as an efficient, scalable, and cost-effective approach for bioseparation. However, there has been little study so far that comprehensively evaluates the potential application of ultrafiltration for scaled sEV isolation and purification.

View Article and Find Full Text PDF
Article Synopsis
  • * The study created machine learning models to predict these effects for amino acids and monoclonal antibodies using basic molecular descriptors, with validation through real-world data and scientific literature.
  • * These models offer a new in silico approach that simplifies and speeds up the biopharmaceutical process, enhancing understanding of molecular interactions without relying solely on traditional experimental methods.
View Article and Find Full Text PDF

Techno-functional properties and structural characteristics of cricket protein concentrates affected by pre-treatments and ultrafiltration/diafiltration processes.

Food Chem

December 2024

Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero #1227, Col. El Bajío Arenal, CP 45019 Zapopan, Jalisco, Mexico. Electronic address:

This study aimed to evaluate different pre-treatments on cricket flour (CF), solvent-defatting (CFH), and supercritical-defatting (CFS) to obtain cricket protein concentrate (CPC) by ultrafiltration (UF)-diafiltration (DF) and evaluate the UF-DF performance, techno-functional properties, and digestibility. Results showed that defatting efficiency was 63 % and 85 % for solvent-defatting and supercritical fluid defatting, respectively. The supercritical fluid extraction process decreased the protein solubility and affected the UF performance, decreasing protein retention by 33 %.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules.

View Article and Find Full Text PDF

Fractionation of Extracellular Polymeric Substances by Aqueous Three-Phase Partitioning Systems.

Ind Eng Chem Res

June 2024

Sustainable Process Technology Group, Department of Chemical Engineering, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 Enschede, The Netherlands.

Extracellular polymeric substances (EPS) are natural polymers secreted by microorganisms and represent a key chemical for the development of a range of circular economy applications. The production of EPS comes with notable challenges such as downstream processing. In this work, a three-phase partitioning (TPP) system was investigated as a fractionation technique for the separation of polysaccharides and proteins, both present in the EPS culture broth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!