Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examined the seasonal cycle of radon concentration observed at King Sejong Station (KSG, 62°S), Antarctic Peninsula, during the period 2013-2016. The distribution of monthly radon concentration was found to be highly positively skewed from March through October (austral autumn to spring) due to large numbers of short-lived periods of high radon concentration. The global atmospheric chemistry model (CAM-Chem), which includes all global terrestrial sources of radon except for those in Antarctica, well reproduces the observed seasonal cycle of monthly-mean radon concentration at KSG. Further offline experiments suggest that uncertainties in radon emissions over South America and the Southern Ocean should be improved for the simulations of radon in Antarctica. The results demonstrate that seasonally varying transport of radon in the boundary layer from South America substantially affects the seasonality of monthly mean radon concentration at KSG. The composite analyses further reveal that high radon events at KSG are the result of a distinct east-west dipole-like structure associated with surface cyclonic circulation over the Bellingshausen Sea and anticyclonic circulation in the Weddell Sea. This atmospheric pattern provides favorable conditions for radon transport into KSG from the northwest. The relationship between radon concentration at KSG and climate variability is also discussed in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.113998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!