Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the non-homogeneous and multiphase nature of anaerobic lagoon constituents, CFD modelling for process optimisation requires continuous functions for shear and solid-liquid separation properties across a large range of solids concentrations. Unfortunately, measurement of existing material properties of anaerobic sludges is limited to only shear or solid-liquid separation, or to a limited solids concentration. In this work, the shear properties of an anaerobic sludge were measured from 0.4 to 12.5 vol%, which corresponds to the solids concentrations seen in lagoons. The sludge showed Newtonian behaviour at 0.4 vol% and Herschel-Bulkley yield stress fluid behaviour for higher concentrations ranging from 0.5 to 12 vol%. We compared multiple approaches to determine relationships between the model fitting parameters of consistency, k, flow index, n, and shear yield stress, τ with solids volume fraction ϕ.The solid-liquid separation properties were measured from sedimentation and filtration experiments to obtain compressibility and permeability properties across all the above-mentioned concentrations, enabling development of hindered velocity sedimentation curves. Comparison to full-scale anaerobic digestate identified that the pilot lagoon sludge had faster sedimentation at a given solids concentration in comparison to the digestate. This is the first study on simultaneous rheological characterisation and solid-liquid separation behaviour of an anaerobic sludge across a wide range of concentrations, thus enabling CFD modelling of the hydrodynamics and performance of anaerobic lagoons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.118903 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!