Nickel and cobalt layered double hydroxide (NiCo-LDH) has large specific surface area and interlayer spacing, multiple redox states and high ion-exchange capability, but poor electrical conductivity, severe agglomerations and structural defect restrict energy storage ability of NiCo-LDH as active materiel of battery supercapacitor hybrids (BSH). In this study, it is the first time to design sulfur-doped NiCo-LDH and polypyrrole nanotubes composites (NiCo-LDH-S/PNTs) from zeolitic imidazolate framework-67 (ZIF-67) as the efficient active material of BSH using electrospinning and hydrothermal processes. Effects of sulfur doping amounts are investigated. The one-dimensional hollow polypyrrole decorated with NiCo-LDH-S sheets with high aspect ratio provides straight charge-transfer routes and abundant contacts with electrolyte. The highest specific capacitance (C) of 1936.3 F/g (specific capacity of 322.8 mAh/g) is achieved for the NiCo-LDH-S/PNTs with sulfur doping amount of 7% at 10 mV/s. The BSH comprising graphene LDH negative electrode and NiCo-LDH-S/PNTs positive electrode shows the maximum energy density of 16.28 Wh/kg at 650 W/kg. The C retention of 74% and Coulombic efficiency of 90% are also achieved after 8000 charge/discharge cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.07.154 | DOI Listing |
Langmuir
January 2025
Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Chemistry, University of Mazandaran, Babolsar, Iran. Electronic address:
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level.
View Article and Find Full Text PDFSmall
December 2024
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China.
NiFe-based materials, especially NiFe layered double hydroxides (LDHs), are recognized as the most promising non-precious metal electrocatalysts for alkaline oxygen evolution reaction (OER). However, the precisely designed distribution of active sites for enhancing activities is still significantly restricted due to the lack of reasonable modulation strategies. Herein, sulfur doped Ni/Fe gradient-distributed LDH (GD-NiFe LDH/S) is fabricated by facile air-induced strategy at room temperature.
View Article and Find Full Text PDFChemosphere
November 2024
College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
The low photogenerated carrier separation and transport ability of the photocatalyst are the main factors inhibiting the photocatalytic activity. The construction of composite photocatalysts can effectively improve the efficiency of photogenerated carriers. However, the problem of reduced photocatalyst stability and catalytic activity due to easy separation of unstable composite interfaces has not been well solved for a long time.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!