Recent research and development of inhibitors targeting sentrin-specific protease 1 for the treatment of cancers.

Eur J Med Chem

Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China. Electronic address:

Published: November 2022

AI Article Synopsis

  • SENP1 is a cysteine protease that helps with the maturation of SUMO proteins and regulates gene transcription, influencing various cancers.
  • Inhibiting SENP1 can reduce cancer cell survival and make them more sensitive to treatments, positioning it as a promising target for cancer therapy.
  • The review discusses SENP1's structure, function in tumor development, and the ongoing research into small molecule inhibitors that could lead to effective cancer treatments.

Article Abstract

Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), is a cysteine protease that promotes SUMO maturation and deSUMOylation of target proteins and regulates transcription factors or co-regulatory factors to mediate gene transcription. Many studies have shown that SENP1 is the driving factor for a multitude of cancers including prostate cancer, liver cancer, and breast cancer. Inhibition of SENP1 activity has been proved to inhibit the survival, proliferation, invasion, and migration of cancer cells, and increase their chemical and radiation sensitivity. Therefore, SENP1 is a promising anti-tumor target. At present, peptide inhibitors of SENP1 have entered clinical trials. Recently, many small molecule compounds and natural products were synthesized and identified as SENP1 inhibitors, and showed good tumor inhibitory activity in vitro and in vivo. This review summarizes the structure, physiological function, and role of SENP1 in tumorigenesis and development, focusing on the design and discovery of small molecule inhibitors of SENP1 from the perspective of medicinal chemistry, providing ideas for the development and research of small molecule inhibitors of SENP1 in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114650DOI Listing

Publication Analysis

Top Keywords

inhibitors senp1
12
small molecule
12
senp1
9
molecule inhibitors
8
development inhibitors
4
inhibitors targeting
4
targeting sentrin-specific
4
sentrin-specific protease
4
protease treatment
4
treatment cancers
4

Similar Publications

Human ANP32A/B are SUMOylated and utilized by avian influenza virus NS2 protein to overcome species-specific restriction.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.

Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.

View Article and Find Full Text PDF

mG-modified mt-tRF3b-LeuTAA regulates mitophagy and metabolic reprogramming via SUMOylation of SIRT3 in chondrocytes.

Biomaterials

March 2025

Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. Electronic address:

N7-methylguanosine (mG) modification is one of the most prevalent RNA modifications, and methyltransferase-like protein-1 (METTL1) is a key component of the mG methyltransferase complex. METTL1-catalyzed mG as a new RNA modification pathway that regulates RNA structure, biogenesis, and cell migration. Increasing evidence indicates that mG modification has been implicated in the pathophysiological process of osteoarthritis (OA).

View Article and Find Full Text PDF

SUMO1 modification of 0N4R-tau is regulated by PIASx, SENP1, SENP2, and TRIM11.

Biochem Biophys Rep

September 2024

Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan.

Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified.

View Article and Find Full Text PDF

Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear.

View Article and Find Full Text PDF

MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation.

Autophagy

January 2025

Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!