Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), is a cysteine protease that promotes SUMO maturation and deSUMOylation of target proteins and regulates transcription factors or co-regulatory factors to mediate gene transcription. Many studies have shown that SENP1 is the driving factor for a multitude of cancers including prostate cancer, liver cancer, and breast cancer. Inhibition of SENP1 activity has been proved to inhibit the survival, proliferation, invasion, and migration of cancer cells, and increase their chemical and radiation sensitivity. Therefore, SENP1 is a promising anti-tumor target. At present, peptide inhibitors of SENP1 have entered clinical trials. Recently, many small molecule compounds and natural products were synthesized and identified as SENP1 inhibitors, and showed good tumor inhibitory activity in vitro and in vivo. This review summarizes the structure, physiological function, and role of SENP1 in tumorigenesis and development, focusing on the design and discovery of small molecule inhibitors of SENP1 from the perspective of medicinal chemistry, providing ideas for the development and research of small molecule inhibitors of SENP1 in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2022.114650 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.
View Article and Find Full Text PDFBiomaterials
March 2025
Department of Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. Electronic address:
N7-methylguanosine (mG) modification is one of the most prevalent RNA modifications, and methyltransferase-like protein-1 (METTL1) is a key component of the mG methyltransferase complex. METTL1-catalyzed mG as a new RNA modification pathway that regulates RNA structure, biogenesis, and cell migration. Increasing evidence indicates that mG modification has been implicated in the pathophysiological process of osteoarthritis (OA).
View Article and Find Full Text PDFBiochem Biophys Rep
September 2024
Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan.
Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified.
View Article and Find Full Text PDFJ Cell Mol Med
August 2024
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!