Rett syndrome is a neurological disease due to loss-of-function mutations in the transcription factor, Methyl CpG binding protein 2 (MECP2). Because overexpression of endogenous MECP2 also causes disease, we have exploited a targeted RNA-editing approach to repair patient mutations where levels of MECP2 protein will never exceed endogenous levels. Here, we have constructed adeno-associated viruses coexpressing a bioengineered wild-type ADAR2 catalytic domain (Editase) and either -targeting or nontargeting RNA guides. The viruses are introduced systemically into male mice containing a guanosine to adenosine mutation that eliminates MeCP2 protein and causes classic Rett syndrome in humans. We find that in the mutant mice injected with the -targeting virus, the brainstem exhibits the highest RNA-editing frequency compared to other brain regions. The efficiency is sufficient to rescue MeCP2 expression and function in the brainstem of mice expressing the -targeting virus. Correspondingly, we find that abnormal Rett-like respiratory patterns are alleviated, and survival is prolonged, compared to mice injected with the control guide virus. The levels of RNA editing among most brain regions corresponds to the distribution of guide RNA rather than Editase. Our results provide evidence that a targeted RNA-editing approach can alleviate a hallmark symptom in a mouse model of human disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388114PMC
http://dx.doi.org/10.1073/pnas.2206053119DOI Listing

Publication Analysis

Top Keywords

rett syndrome
12
rna editing
8
mouse model
8
targeted rna-editing
8
rna-editing approach
8
mecp2 protein
8
mice injected
8
-targeting virus
8
brain regions
8
mecp2
5

Similar Publications

DDX3X syndrome is often misdiagnosed as autism spectrum disorder (ASD, Rett Syndrome, and Dandy-Walker Syndrome). Precise phenotyping is needed with reference to neurodevelopmental diagnosis. Observation of behavior and communication in parents with DDX3X syndrome in the USA, France, and Poland; conversations with the parents of patients; and rudimentary information in evidence-based medical articles prompted us to identify differences in communication, play, and social interaction between children with ASD only, those with both ASD and , and those with only.

View Article and Find Full Text PDF

Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.

View Article and Find Full Text PDF

Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

The Newborn Screening Programme Revisited: An Expert Opinion on the Challenges of Rett Syndrome.

Genes (Basel)

December 2024

Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, its purpose is to facilitate the earlier identification of rare conditions and thereby improve health-related outcomes for individuals.

View Article and Find Full Text PDF

Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!