We propose a novel framework to passively monitor pulse rate during the time spent by users on their personal mobile devices. Our framework is based on passively capturing the user's pulse signal using the front-facing camera. Signal capture is performed in the background, while the user is interacting with the device as he/she normally would, e.g., watch movies, read emails, text, and play games. The framework does not require subject participation with the monitoring procedure, thereby addressing the well-known problem of low adherence with such procedures. We investigate various techniques to suppress the impact of spontaneous user motion and fluctuations in ambient light conditions expected in non-participatory environments. Techniques include traditional signal processing, machine learning classifiers, and deep learning methods. Our performance evaluation is based on a clinical study encompassing 113 patients with a history of atrial fibrillation (Afib) who are passively monitored at home using a tablet for a period of two weeks. Our results show that the proposed framework accurately monitors pulse rate, thereby providing a gateway for long-term monitoring without relying on subject participation or the use of a dedicated wearable device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244025 | PMC |
http://dx.doi.org/10.1109/JBHI.2022.3197076 | DOI Listing |
Rev Sci Instrum
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate.
View Article and Find Full Text PDFEur Ann Allergy Clin Immunol
January 2025
Immunology Service, Hospital Universitário Clementino Fraga Filho (HUCFF-UFRJ), Rio de Janeiro, Brazil.
Cholinergic urticaria (CholU) is characterized by itching and/or stinging, painful micro wheals due to systemic heating. There are two standardized protocols to diagnose CholU using an exercise bike with heart rate or warming passive. The objective is to provide an affordable, new, low-tech test to assist the diagnostic.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Smith Tower, Ste 1801, Houston, TX 77030 (M.M., P.B., V.C., M.S., M.R., S.F.N., W.A.Z., D.J.S.); and Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, Tex (D.T.N., E.A.G.).
Purpose To investigate the determinants and effect of right ventricular (RV) dysfunction in aortic regurgitation (AR) using cardiac MRI. Materials and Methods This study included patients with moderate or severe AR who were enrolled in the DEBAKEY-CMR registry between January 2009 and June 2020. Patients with previous valve intervention, cardiomyopathy deemed unrelated to AR, severe aortic stenosis, and other confounders were excluded.
View Article and Find Full Text PDFA A Pract
January 2025
Integrated Anesthesia Associates, Department of Anesthesia, Hartford Hospital, Hartford, Connecticut.
Inappropriate sinus tachycardia (IST) presents challenges in diagnosis and treatment due to its unclear etiology and limited therapeutic options. This case report explores the use of continuous stellate ganglion block (CSGB) as a potential treatment avenue. A 23-year-old woman with refractory IST underwent several CSGB placements, resulting in prolonged symptom relief and decreased median heart rate.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, California State University at Long Beach, 1250 N. Bellflower Blvd., Long Beach, CA, 90840, USA.
Temperature-dependent rate constants for the reaction of the -dodecane radical cation (RH˙) with trivalent lanthanide ion-complexed ,,','-tetraoctyl diglycolamide (TODGA) over the range 10-40 °C have been determined using electron pulse radiolysis/transient absorption spectroscopy techniques. For the free ligand, an activation energy of = 20.4 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!