As data sources become ever more numerous with increased feature dimensionality, feature selection for multiview data has become an important technique in machine learning. Semi-supervised multiview feature selection (SMFS) focuses on the problem of how to obtain a discriminative feature subset from heterogeneous feature spaces in the case of abundant unlabeled data with little labeled data. Most existing methods suffer from unreliable similarity graph structure across different views since they separate the graph construction from feature selection and use the fixed graphs that are susceptible to noisy features. Furthermore, they directly concatenate multiple feature projections for feature selection, neglecting the contribution diversity among projections. To alleviate these problems, we present an SMFS to simultaneously select informative features and learn a unified graph through the data fusion from aspects of feature projection and similarity graph. Specifically, SMFS adaptively weights different feature projections and flexibly fuses them to form a joint weighted projection, preserving the complementarity and consensus of the original views. Moreover, an implicit graph fusion is devised to dynamically learn a compatible graph across views according to the similarity structure in the learned projection subspace, where the undesirable effects of noisy features are largely alleviated. A convergent method is derived to iteratively optimize SMFS. Experiments on various datasets validate the effectiveness and superiority of SMFS over state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3194957 | DOI Listing |
BMC Med Inform Decis Mak
January 2025
Department of Pediatrics, School of Medicine, Ekbatan Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.
Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Pediatric, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury in pediatric patients ECMO and identify key variables for future research.
Methods: Data from pediatric patients undergoing ECMO were collected from the Chinese Society of Extracorporeal Life Support (CSECLS) registry database and local hospitals.
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Psychiatry
January 2025
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Mental disorders are increasingly prevalent, leading to increased medical expenditures. To refine the reimbursement of medical costs for inpatients with mental disorders by health insurance, an accurate prediction model is essential. Per-diem payment is a common internationally implemented payment method for medical insurance of inpatients with mental disorders, necessitating the exploration of advanced machine learning methods for predicting the average daily hospitalization costs (ADHC) based on the characteristics of inpatients with mental disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!