The Rad9-Rad1-Hus1 checkpoint clamp activates the DNA damage response and promotes DNA repair. DNA loading on the central channel of the Rad9-Rad1-Hus1 complex is required to execute its biological functions. Because Rad9A has the highest DNA affinity among the three subunits, we determined the domains and functional residues of human Rad9A that are critical for DNA interaction. The N-terminal globular domain (residues 1-133) had 3.7-fold better DNA binding affinity than the C-terminal globular domain (residues 134-266) of Rad9A1-266. Rad9A1-266 binds DNA 16-, 60-, and 30-fold better than Rad9A1-133, Rad9A134-266, and Rad9A94-266, respectively, indicating that different regions cooperatively contribute to DNA binding. We show that basic residues including K11, K15, R22, K78, K220, and R223 are important for DNA binding. The reductions on DNA binding of Ala substituted mutants of these basic residues show synergistic effect and are dependent on their residential Rad9A deletion constructs. Interestingly, deletion of a loop (residues 160-163) of Rad9A94-266 weakens DNA binding activity by 4.1-fold as compared to wild-type (WT) Rad9A94-266. Cellular sensitivity to genotoxin of rad9A knockout cells is restored by expressing WT-Rad9Afull. However, rad9A knockout cells expressing Rad9A mutants defective in DNA binding are more sensitive to H2O2 as compared to cells expressing WT-Rad9Afull. Only the rad9A knockout cells expressing loop-deleted Rad9A mutant are more sensitive to hydroxyurea than cells expressing WT-Rad9A. In addition, Rad9A-DNA interaction is required for DNA damage signaling activation. Our results indicate that DNA association by Rad9A is critical for maintaining cell viability and checkpoint activation under stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359528 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272645 | PLOS |
Methods Mol Biol
January 2025
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.
View Article and Find Full Text PDFTrop Med Infect Dis
November 2024
Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
Tuberculosis (TB) is a global health challenge associated with considerable levels of illness and mortality worldwide. The development of innovative therapeutic strategies is crucial to combat the rise of drug-resistant TB strains. DNA Gyrase A (GyrA) and serine/threonine protein kinase (PknB) are promising targets for new TB medications.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.
Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China.
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!