The mitochondrial unfolded protein response (mtUPR)-a stress response pathway for maintaining protein homeostasis-is critical in seizures-induced neuronal injury. The activating transcription factor 5 (ATF5) regulates mtUPR; however, whether ATF5-regulated mtUPR has a role in neuronal injury in epilepsy remains uncertain. Here, we investigated the effects of ATF5-regulated mtUPR on neuronal injury in hippocampal neurons with seizures evoked by Mg-free medium. HSP60 and ClpP, key proteins of mtUPR, were upregulated, indicating mtUPR activation. ATF5 overexpression by lentiviral vector infection potentiated mtUPR, whereas ATF5 downregulation by lentiviral vector infection attenuated this response. Moreover, ATF5 overexpression elevated mitochondrial membrane potential and reduced reactive oxygen species (ROS) generation, suggesting that ATF5 overexpression protected mitochondrial homeostasis, while ATF5 downregulation had the opposite effect. ATF5 overexpression also reversed Bcl2 downregulation and Bax upregulation and attenuated seizures-induced neuronal apoptosis, while ATF5 downregulation aggravated the injury. Our study demonstrates that ATF5 attenuates seizures-induced neuronal injury, possibly by regulating mtUPR pathways, to prevent mitochondrial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-022-03702-0DOI Listing

Publication Analysis

Top Keywords

neuronal injury
16
atf5 overexpression
16
seizures-induced neuronal
12
atf5 downregulation
12
atf5
10
atf5 attenuates
8
hippocampal neurons
8
neurons seizures
8
seizures evoked
8
evoked mg-free
8

Similar Publications

The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles.

View Article and Find Full Text PDF

Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.

Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.

View Article and Find Full Text PDF

Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.

Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.

View Article and Find Full Text PDF

Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

Theranostics

January 2025

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear.

View Article and Find Full Text PDF

Introduction: Compression of the nerve root by a lumbar disc herniation can cause radiating pain in the lower limbs, and the nerve root decompression treatment may leave some patients with motor dysfunction and reduced sensory function. Studies have shown that nerve growth factor (NGF) can promote nerve growth and repair, but high doses, long duration, and immune response have become bottlenecks of its clinical application.

Methods: To overcome this obstacle, we developed Prussian blue (PBs) nanoparticles with the bio-delivery function and antioxidant effects of nanoenzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!