Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxaliplatin is widely used in cancer treatment, however, many patients will suffer from neuropathic pain (NP) induced by it at the same time. Therefore exploring the mechanism and founding novel target for this problem are needed. In this study, YTHDF1 showed upregulation in oxaliplatin treated mice. As m6A is known as conserved and it widely functions in numerous physiological and pathological processes. Therefore, we focused on exploring the molecular mechanism of whether and how YTHDF1 functions in NP induced by oxaliplatin. IHC and western blotting were conducted to measure proteins. Intrathecal injection for corresponding siRNAs in C57/BL6 mice or spinal microinjection for virus in YTHDF1 mice were applied to specially knockdown the expression of molecular. Von Frey, acetone test and ethyl chloride (EC) test were applied to evaluate NP behavior. YTHDF1, Wnt3a, TNF-α and IL-18 were increased in oxaliplatin treated mice, restricted the molecular mentioned above respectively can significantly attenuate oxaliplatin-induced NP, including the mechanical allodynia and cold allodynia. Silencing YTHDF1 and inhibiting Wnt3a and Wnt signaling pathways can reduce the enhancement of TNF-α and IL-18, and the decreasing of the upregulation of YTHDF1 can be found when inhibiting Wnt3a and Wnts signaling pathways in oxaliplatin treated mice. Our study indicated a novel pathway that can contribute to oxaliplatin-induced NP, the Wnt3a/YTHDF1 to cytokine pathway, which upregulating YTHDF1 functioned as the downstream of Wnt3a signal and promoted the translation of TNF-α and IL-18 in oxaliplatin treated mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-022-01267-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!